Logic, Computability and Incompleteness

Theories

Wolfgang Schwarz

17 October 2025

Theories

Theories

A (first-order) **theory** *T* is a set of sentences closed under entailment.

Notation: $T \vdash A$ (synonym of $A \in T$).

By completeness, $T \vdash A$ iff $T \models A$.

T is **axiomatized** by Γ iff $T = \{A : \Gamma \vdash A\}$.

Language of first-order arithmetic

• Symbols: 0, s, +, \times .

All computable number-theoretic properties and relations are definable from $0, s, +, \times$.

- $x < y \text{ iff } \exists z (x + s(z) = y).$
- t is prime iff

$$s(0) < t \land \forall y (\exists z (z \times y = t) \rightarrow (y = s(0) \lor y = t)).$$

Robinson's Q:

Q1
$$\forall x \forall y (s(x) = s(y) \rightarrow x = y)$$

$$Q2 \quad \forall x \, 0 \neq s(x)$$

Q3
$$\forall x (x \neq 0 \rightarrow \exists y x = s(y))$$

$$\mathbf{Q4} \quad \forall \mathbf{x} \, (\mathbf{x} + 0 = \mathbf{x})$$

Q5
$$\forall x \forall y (x + s(y) = s(x + y))$$

Q6
$$\forall x (x \times 0 = 0)$$

Q7
$$\forall x \forall y (x \times s(y) = (x \times y) + x)$$

First-Order Peano Arithmetic (PA):

Q1
$$\forall x \forall y (s(x) = s(y) \rightarrow x = y)$$

Q2 $\forall x \ 0 \neq s(x)$
Ind $A(0) \land \forall x (A(x) \rightarrow A(s(x))) \rightarrow \forall x \ A(x)$
Q4 $\forall x (x + 0 = x)$
Q5 $\forall x \forall y (x + s(y) = s(x + y))$
Q6 $\forall x (x \times 0 = 0)$
Q7 $\forall x \forall y (x \times s(y) = (x \times y) + x)$

Second-Order Peano Arithmetic (PA2):

Q1
$$\forall x \forall y (s(x) = s(y) \rightarrow x = y)$$

Q2 $\forall x \ 0 \neq s(x)$
Ind2 $\forall X (X(0) \land \forall y (X(y) \rightarrow X(s(y))) \rightarrow \forall y X(y)$
Q4 $\forall x (x + 0 = x)$
Q5 $\forall x \forall y (x + s(y) = s(x + y))$
Q6 $\forall x (x \times 0 = 0)$
Q7 $\forall x \forall y (x \times s(y) = (x \times y) + x)$

Nonstandard models of Q and PA (and $\mathrm{Th}(\mathfrak{A})$)

- Add a new constant c and sentences $c \neq 0$, $c \neq s(0)$, $c \neq s(s(0))$, . . .
- Every finite subset has a model.
- By compactness: there is a model of Q/PA/ $\operatorname{Th}(\mathfrak{A})$ where c is not any $s^n(0)$.

No first-order theory can exclude extra elements beyond the standard $0, 1, 2, \ldots$

No nonstandard models of PA2

The second-order Induction axiom excludes nonstandard elements:

$$\forall X(X(0) \land \forall y (X(y) \rightarrow X(s(y))) \rightarrow \forall y X(y)$$

Let
$$X(y) \iff \forall Z(Z(0) \land \forall x (Z(x) \rightarrow Z(s(x))) \rightarrow Z(y)$$

All models of PA2 are isomorphic.

Compactness fails in second-order logic.

Gödel's First Incompleteness Theorem

Every consistent, computably axiomatizable extension T of Q is incomplete: there is a sentence G such that neither $T \vdash G$ nor $T \vdash \neg G$.

- ullet Q, PA, PA2 are all computably axiomatizable; $\operatorname{Th}({\mathfrak A})$ is not.
- Q, PA, PA2 are all incomplete; $\operatorname{Th}(\mathfrak{A})$ is complete.
- But PA2 \models A for all $A \in Th(\mathfrak{A})$ (all models of PA2 are isomorphic to \mathfrak{A}).
- So PA2 \models G or PA2 \models \neg G, even though PA2 $\not\vdash$ G and PA2 $\not\vdash$ \neg G.
- So second-order logic has no sound and complete proof system.

The cumulative hierarchy \lor

•
$$V_0 = \emptyset$$

•
$$V_1 = \mathcal{P}(V_0) = \{\emptyset\}$$

•
$$V_2 = \mathcal{P}(V_1) = \{\varnothing, \{\varnothing\}\}$$

•
$$V_{\omega} = \bigcup_{k < \omega} V_k$$

•
$$V_{\omega+1} = \mathcal{P}(V_{\omega})$$

•
$$V_{\omega+\omega} = \bigcup_{n<\omega} V_{\omega+n}$$

• At limit ordinals λ : $V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha}$.

Language and contextual definitions

• Non-logical symbol: ∈;

Define ∅ via:

• $A(\varnothing)$ iff $\exists x (\forall y \neg y \in x \land A(x))$.

ZFC axioms:

- Z1 Extensionality: $\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y)$
- Z2 Separation (schema): $\forall y \exists z \forall x (x \in z \leftrightarrow (x \in y \land A(x)))$
- Z3 Empty set: $\exists x \forall y (y \notin x)$
- Z4 Union: $\forall x \exists u \forall y (y \in u \leftrightarrow \exists z (z \in x \land y \in z))$
- *Z5 Power set:* $\forall x \exists p \forall y (y \in p \leftrightarrow y \subseteq x)$
- *Z6 Pairing:* $\forall x \forall y \exists z \forall v (v \in z \leftrightarrow (v = x \lor v = y))$
- *Z7 Infinity:* $\exists x (\emptyset \in x \land \forall y (y \in x \rightarrow y \cup \{y\} \in x))$
- **Z8** Foundation: $\forall x (x \neq \emptyset \rightarrow \exists y (y \in x \land x \cap y = \emptyset))$
- Z9 Replacement (schema): if A defines a function whose domain is a set, then its image is a set.
- Z10 Choice: from any set of nonempty sets, there is a choice function selecting one element from each.

Von Neumann ordinals

- $0 = \varnothing$,
- $1 = \{0\} = \{\emptyset\},$
- $2 = \{0, 1\} = \{\varnothing, \{\varnothing\}\}$,
- ...

Successor: $s(x) = x \cup \{x\}$.

PA is **interpretable** in ZFC: every PA axiom translates to a theorem of ZFC.

Von Neumann ordinals

- $0 = \varnothing$,
- $1 = \{0\} = \{\emptyset\},$
- $2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}\$,
- ...
- $\omega = \{0, 1, 2, \dots\}$
- $\omega + 1 = \{0, 1, 2, \dots, \omega\}$
- $\omega + 2 = \{0, 1, 2, \dots, \omega, \omega + 1\}$
- ...
- $\omega \cdot 2 = \{0, 1, 2, \dots, \omega, \omega + 1, \omega + 2, \dots\}$
- ...

An ordinal is any set that is transitive and \in -ordered.

Cardinals as ordinals

The cardinality of a set *X* is the least ordinal equinumerous with *X*.

- $|\varnothing| = 0 = \varnothing$
- $\bullet \ |\{\varnothing\}|=1=\{\varnothing\}$
- $|\mathbb{N}| = \aleph_0 = \omega$
- $|\mathcal{P}(\mathbb{N})| > \omega$

Cardinals as ordinals

- $|\mathbb{N}| = \aleph_0 = \omega$
- $|\mathcal{P}(\mathbb{N})| > \omega$

The Continuum Hypothesis (CH): $|\mathcal{P}(\mathbb{N})| = \aleph_1$

- Gödel (1938): ZFC ⊬ ¬CH (if ZFC consistent).
- Cohen (1963): ZFC ⊬ CH (if ZFC consistent).