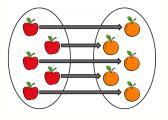
Logic, Computability and Incompleteness

Completeness of first-order Logic

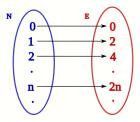
Wolfgang Schwarz

10 October 2025

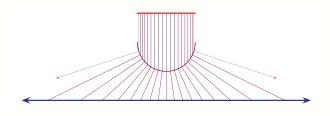
The Galileo-Hume-Cantor Principle: Two sets have the same size iff there is a one-to-one correspondence between their elements.



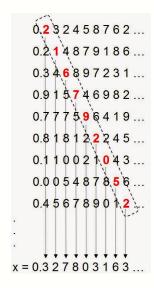
The Galileo-Hume-Cantor Principle: Two sets have the same size iff there is a one-to-one correspondence between their elements.



The Galileo-Hume-Cantor Principle: Two sets have the same size iff there is a one-to-one correspondence between their elements.



Cantor's Theorem: There are uncountable sets.



Completeness of First-Order Logic

Completeness of First-Order Logic

The Completeness Theorem: If $\Gamma \models A$, then $\Gamma \vdash A$.

Proof strategy:

- Assume $\Gamma \not\vdash A$.
- Then $\Gamma \cup \{\neg A\}$ is consistent.
- Every consistent set extends to a maximal consistent set.
- From a maximal consistent set, we can read off a model that satisfies all sentences in the set.
- So there is a model that satisfies Γ and $\neg A$.
- So $\Gamma \not\models A$.

Completeness of First-Order Logic

The Completeness Theorem: If $\Gamma \models A$, then $\Gamma \vdash A$.

Proof strategy:

- Assume $\Gamma \not\vdash A$.
- Then $\Gamma \cup \{\neg A\}$ is consistent.
- Every consistent set extends to a Henkin set.
- From a Henkin set, we can read off a model that satisfies all sentences in the set.
- So there is a model that satisfies Γ and $\neg A$.
- So $\Gamma \not\models A$.

A Henkin set is maximal consistent and contains a "witness" A(c) for each element $\exists x A(x)$.

The Compactness Theorem: If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Typical application:

- 1. Take some theory *T*.
- 2. Add infinitely many sentences $S_1, S_2, S_3, ...$ to T of which any finite subset is obviously compatible with T.
- 3. Use compactness to infer that $T \cup \{S_1, S_2, S_3, ...\}$ has a model.

The Compactness Theorem: If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Example:

- 1. Take any consistent theory *T* of the natural numbers.
- 2. Add 0 < c, 1 < c, 2 < c, ... to T.
- 3. By compactness, $T \cup \{0 < c, 1 < c, 2 < c, ...\}$ has a model.

The Compactness Theorem: If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Example:

- 1. Take any consistent theory *T* with a countably infinite model.
- 2. Add $c \neq d$ for uncountably many new constants c and d to T.
- 3. By compactness, *T* has an uncountable model.