
7 Recursive Functions

In this chapter, we define the class of recursive functions as the functions that can be
built from certain base functions using some simple operations. We show that a wide
range of functions are recursive, and that the recursive functions are exactly the Turing-
computable functions.

7.1 Primitive recursive functions

In Chapter 5, I said that a function is computable if there are precise instructions, an
algorithm, for determining its output for any given input, without drawing on external re-
sources or creativity. Let’s concentrate on functions on natural numbers. (I’ve explained
in Section 5.5 why this is not a serious restriction.)
Consider the “counting on” algorithm for addition that youmay have learned as a child.

To compute 𝑥 + 𝑦, you start with the number 𝑥; then you “count on” from 𝑥, adding 1
𝑦 times. The algorithm effectively reduces addition to repeated application of the suc-
cessor function. Simple algorithms for multiplication similarly reduce multiplication to
repeated addition.
Generalizing, algorithms for computing arithmetical functions usually invoke subrou-

tines for computing simpler functions. These subroutines may in turn invoke other sub-
routines, until we reach functions that are so simple that they can be computed in a single
step, without any subroutines. This suggests that the computable functions might be de-
fined as the functions that can be built up from certain base functions using certain modes
of construction. This is how Gödel defined the class of primitive recursive functions in
his 1931 paper on the incompleteness theorems.
Following Gödel, we start with three kinds of base functions.

1. The successor function 𝑠 returns the next larger number for any input number.
2. The zero function 𝑧 returns 0 for any input number.
3. For each 𝑛, 𝑖, the projection function 𝜋𝑛

𝑖 takes 𝑛 numbers as input and return the
𝑖-th of them. (For example 𝜋3

2(5, 9, 2) = 9.)

125

7 Recursive Functions

These functions are trivially computable, without needing any subroutines.
We now define two operations for constructing new functions from old ones. The

first is composition. Given some functions 𝑓 and 𝑔, we can define a new function ℎ by
applying one to the output of the other:

ℎ(𝑥) = 𝑓 (𝑔(𝑥)).

If 𝑓 and 𝑔 are computable, then ℎ is also computable. To compute ℎ(𝑥), we only need to
compute 𝑔(𝑥) and feed the output into 𝑓 .
I’ve assumed that 𝑓 and 𝑔 both take one number as input. For the general case, assume

that 𝑓 is a function of m arguments, and each of 𝑔1, … , 𝑔𝑚 is a function of 𝑛 arguments.
We define the composition of 𝑓 and 𝑔1, … , 𝑔𝑚 as:

ℎ(𝑥1, … , 𝑥𝑛) = 𝑓 (𝑔1(𝑥1, … , 𝑥𝑛), … , 𝑔𝑚(𝑥1, … , 𝑥𝑛))

Instead of introducing a new name ‘ℎ’ for the composed function, we can also write
the composition as Cn[𝑓 , 𝑔1, … , 𝑔𝑚]. For example, Cn[𝑠, 𝑧] is the function that takes a
number as input, passes it to the zero function and passes the output to the successor
function: Cn[𝑠, 𝑧](𝑥) = 𝑠(𝑧(𝑥)). This is the constant function that always outputs 1.

Exercise 7.1 What is (a) Cn[𝑠, 𝑠]? (b) Cn[𝑠,Cn[𝑠, 𝑧]]?

Exercise 7.2 Define the 1-place function that always returns 4, using composi-
tion and the base functions.

Our second method for constructing functions is primitive recursion. We’ve met this
in Section 4.1 when we talked about axioms of arithmetic. Addition, for example, can
be reduced to the successor function by the following definition:

𝑥 + 0 = 𝑥
𝑥 + 𝑠(𝑦) = 𝑠(𝑥 + 𝑦)

The definition effectively tells us how to compute 𝑥 + 𝑦 starting from 𝑥 + 0, then working
our way up through 𝑥 + 1, 𝑥 + 2, and so on, until we reach 𝑥 + 𝑦. (The first line gives us
𝑥 + 0; the second line tells us how to get from 𝑥 + 𝑦 to 𝑥 + 𝑠(𝑦).) The algorithm, which
resembles the counting-on strategy, could be stated more explicitly as follows:

126

7 Recursive Functions

function add(x, y):
let z = x
for i from 1 to y:

z = s(z)
return z

In the most general case, a function ℎ is defined by primitive recursion from two other
functions, 𝑓 and 𝑔: 𝑓 specifies the starting point, ℎ(𝑥1, … , 𝑥𝑛, 0); 𝑔 specifies ℎ(𝑥1, … , 𝑥𝑛, 𝑠(𝑦))
in terms of ℎ(𝑥1, … , 𝑥𝑛, 𝑦). We allow 𝑔 to also depend on 𝑥1, … , 𝑥𝑛, and 𝑦. So the general
format for primitive recursion looks like this:

ℎ(𝑥1, … , 𝑥𝑛, 0) = 𝑓 (𝑥1, … , 𝑥𝑛)
ℎ(𝑥1, … , 𝑥𝑛, 𝑠(𝑦)) = 𝑔(𝑥1, … , 𝑥𝑛, 𝑦, ℎ(𝑥1, … , 𝑥𝑛, 𝑦)).

Again, this effectively defines an algorithm for computing ℎ:

function h(x1, ..., xn, y):
let z = f(x1, ..., xn)
for i from 0 to y-1:

z = g(x1, ..., xn, i, z)
return z

If ℎ is defined by primitive recursion from 𝑓 and 𝑔, we also write ℎ = Pr[𝑓 , 𝑔]. For
example, addition is Pr[𝜋1

1,Cn[𝑠, 𝜋3
3]]. That’s because

𝑥 + 0 = 𝜋1
1(𝑥) = 𝑥

𝑥 + 𝑠(𝑦) = Cn[𝑠, 𝜋3
3](𝑥, 𝑦, 𝑥 + 𝑦) = 𝑠(𝑥 + 𝑦).

For another example, consider the truncated predecessor function pred that returns
the predecessor of a number if that number is positive, and otherwise 0. This can be
defined by primitive recursion as follows:

pred(0) = 0
pred(𝑠(𝑦)) = 𝑦

Here, there are no extra arguments 𝑥1, … , 𝑥𝑛. Using pred, we can define a truncated

127

7 Recursive Functions

difference function:

𝑥 ∸ 0 = 𝑥
𝑥 ∸ 𝑠(𝑦) = pred(𝑥 ∸ 𝑦)

𝑥 ∸ 𝑦 is 𝑥 − 𝑦 if 𝑥 ≥ 𝑦, and 0 otherwise.
Another useful function is switcheroo function 𝛿 (“delta”) that takes every positive

integer to 0, and 0 to 1:

𝛿(0) = 1
𝛿(𝑘 + 1) = 0

Exercise 7.3 Write the definitions of pred, ∸, and 𝛿 using the Pr notation.

Exercise 7.4 Define the multiplication function using primitive recursion. Can
you express your definition using the Pr notation?

The class of primitive recursive functions is now defined as follows:

Definition 7.1
A function is primitive recursive if it can be defined from the base functions 𝑠, 𝑧,
and 𝜋𝑛

𝑖 by finitely many applications of composition and primitive recursion.

Proposition 7.1
Every primitive recursive function is total.

Proof. By induction on a function’s construction. The base functions are evidently
total. The composition of total functions is total. For primitive recursion, note that
the algorithm implicitly defined by Pr always terminates after 𝑦 steps when computing
Pr[𝑓 , 𝑔](𝑥1, … , 𝑥𝑛, 𝑦), returning the desired output.
We can extend the concept of primitive recursiveness to sets and relations:

128

7 Recursive Functions

Definition 7.2
A set is primitive recursive if its characteristic function is primitive recursive. A
relation is primitive recursive if its extension is primitive recursive.

Remember that the characteristic function of a set is the function that maps any mem-
ber of the set to 1 and any non-member to 0. At the moment, we are interested in sets
whose members are numbers or tuples of numbers. For example, the set of odd num-
bers is primitive recursive, as its characteristic function 𝜒 can be defined by primitive
recursion, as follows:

𝜒(0) = 0
𝜒(𝑠(𝑦)) = 𝛿(𝜒(𝑦))

The property of being odd is also primitive recursive. A property is a 1-place relation.
So a property of numbers is primitive recursive iff there is a primitive recursive function
that maps every number that has the property to 1 and every other number to 0.
An example of a 2-place primitive recursive relation is the less-than-or-equal relation

on ℕ. Its characteristic function can be defined by composition from ∸ and 𝛿:

Leq(𝑥, 𝑦) = 𝛿(𝑥 ∸ 𝑦).

Another example is the identity relation on ℕ, with the following characteristic function:

Eq(𝑥, 𝑦) = 𝛿((𝑥 ∸ 𝑦) + (𝑦 ∸ 𝑥)).

To see why this works, note that if 𝑥 = 𝑦 then 𝑥 ∸ 𝑦 and 𝑦 ∸ 𝑥 are both 0; if 𝑥 ≠ 𝑦 then at
least one of them is positive.

Exercise 7.5 Show that the set of even numbers is primitive recursive.

Exercise 7.6 Show that the less-than relation on ℕ is primitive recursive. You
may, if you want, use the functions Leq and Eq.

129

7 Recursive Functions

Exercise 7.7 Show that if a relation𝑅 is primitive recursive then so is its negation
¬𝑅 (which holds of exactly those tuples that do not satisfy 𝑅).

Exercise 7.8 Show that if two relations 𝑅 and 𝑆 are primitive recursive then so
is their conjunction 𝑅 ∧ 𝑆 (which holds of exactly those tuples that satisfy both 𝑅
and 𝑆).

7.2 Primitive recursive operations

In the last two exercises, you showed that the primitive recursive relations are closed
under negation and conjunction. Since all truth-functional combinations can be built
up from these two operations, it follows that the primitive recursive relations are closed
under all truth-functional operations.

Proposition 7.2
If 𝑅 and 𝑆 are primitive recursive relations, then so are ¬𝑅, 𝑅 ∧ 𝑆, 𝑅 ∨ 𝑆, 𝑅 → 𝑆,
and 𝑅 ↔ 𝑆.

Proof. Immediately from exercises 7.7 and 7.8.

I’ll define three more operations for defining primitive recursive functions and rela-
tions.
First, bounded quantification. Consider the Divides relation that holds between num-

bers 𝑥 and 𝑦 iff 𝑦 is a multiple of 𝑥. (For example, 3 divides 12, but 3 doesn’t divide 5.)
We might define this as follows:

Divides(𝑥, 𝑦) iff ∃𝑧 (𝑦 = 𝑥 ⋅ 𝑧).

But we don’t need to quantify over all numbers 𝑧. If 𝑥 and 𝑦 are natural numbers, 𝑦 = 𝑥 ⋅𝑧
can only hold if 𝑧 is less than or equal to 𝑦. So we can also use a bounded quantifier in
the definition:

Divides(𝑥, 𝑦) iff ∃𝑧≤𝑦 (𝑦 = 𝑥 ⋅ 𝑧).
This says that 𝑥 divides 𝑦 iff there is some number 𝑧 less than or equal to 𝑦 such that 𝑦
equals 𝑥 times 𝑧. Since multiplication and equality are primitive recursive, this relation
is primitive recursive:

130

7 Recursive Functions

Proposition 7.3
If 𝑅(𝑥1, … , 𝑥𝑛, 𝑦) is a primitive recursive relation, then so are
∀𝑦≤ 𝑘 𝑅(𝑥1, … , 𝑥𝑛, 𝑦) and ∃𝑦≤𝑘 𝑅(𝑥1, … , 𝑥𝑛, 𝑦).

Proof. To simplify notation, I assume that 𝑅 is a two-place relation 𝑅(𝑥, 𝑦); the gener-
alization to more arguments is straightforward. Let 𝜒 be the characteristic function of
𝑅. Define 𝜒′ by primitive recursion as follows:

𝜒′(𝑥, 0) = 𝜒(𝑥, 0)
𝜒′(𝑥, 𝑠(𝑘)) = 𝜒′(𝑥, 𝑘) ⋅ 𝜒(𝑥, 𝑠(𝑘))

This function returns 1 for input 𝑥, 𝑘 iff 𝑅(𝑥, 0), 𝑅(𝑥, 1), … , 𝑅(𝑥, 𝑘) all hold, otherwise
it returns 0. So 𝜒′(𝑥, 𝑘) is the characteristic function of ∀𝑦≤𝑘 𝑅(𝑥, 𝑦).
From bounded universal quantification, we obtain bounded existential quantification
by truth-functional operations: ∃𝑦≤𝑘 𝑅(𝑥, 𝑦) is equivalent to ¬(∀𝑦≤𝑘 ¬𝑅(𝑥, 𝑦)).
So Divides is primitive recursive. The same is true for the property of being a prime

number, as the following definition shows:

Prime(𝑥) iff 1 < 𝑥 ∧ ∀𝑦≤𝑥 (Divides(𝑦, 𝑥) → (𝑦 = 1 ∨ 𝑦 = 𝑥)).

Don’t get confused by the fact that this looks vaguely like a formula of first-order logic.
We’re not trying to define Prime in some first-order language. Everything is in the met-
alanguage. ‘Divides’ and ‘=’ are metalinguistic names for relations on ℕ that we’ve
shown to be primitive recursive; ‘∧’, ‘→ ’, ‘∨’, and ‘∀𝑦 ≤ 𝑥’ denote operations on such
relations.
Next, definition by cases. Suppose we want to define the function max(𝑥, 𝑦) that re-

turns the larger of two numbers 𝑥 and 𝑦:

max(𝑥, 𝑦) =
⎧{
⎨{⎩
𝑥 if 𝑦 ≤ 𝑥,
𝑦 otherwise.

We can use switcheroo and addition to distinguish the two cases:

max(𝑥, 𝑦) = 𝑥 ⋅ Leq(𝑦, 𝑥) + 𝑦 ⋅ 𝛿(Leq(𝑦, 𝑥))
= 𝑥 ⋅ 𝛿(𝑥 ∸ 𝑦) + 𝑦 ⋅ 𝛿(𝛿(𝑥 ∸ 𝑦)).

131

7 Recursive Functions

This trick can be generalized:

Proposition 7.4
If 𝑓 and 𝑔 are primitive recursive functions and 𝑅 is a primitive recursive relation
then the function ℎ defined by

ℎ(𝑥1, … , 𝑥𝑛) =
⎧{
⎨{⎩

𝑓 (𝑥1, … , 𝑥𝑛) if 𝑅(𝑥1, … , 𝑥𝑛),
𝑔(𝑥1, … , 𝑥𝑛) otherwise

is primitive recursive.

Proof. Let 𝜒 be the characteristic function of 𝑅. Then

𝑓 (𝑥1, … , 𝑥𝑛) ⋅ 𝜒(𝑥1, … , 𝑥𝑛) + 𝑔(𝑥1, … , 𝑥𝑛) ⋅ 𝛿(𝜒(𝑥1, … , 𝑥𝑛))

is primitive recursive and defines ℎ.

Exercise 7.9 Suppose ℎ is defined by distinguishing three cases:

ℎ(𝑥) =
⎧{{
⎨{{⎩

𝑓 (𝑥) if 𝑃1(𝑥),
𝑔1(𝑥) if 𝑃2(𝑥),
𝑔2(𝑥) otherwise,

where 𝑓 , 𝑔1, and 𝑔2 are primitive recursive functions. Explain why it follows from
proposition 7.4 that ℎ is primitive recursive

The final operation I want to mention is bounded minimization. Suppose we want to
define the function spf(𝑥) that returns the smallest prime number 𝑦 that divides 𝑥. We
can write this as follows:

spf(𝑥) = 𝜇𝑦 (Prime(𝑦) ∧ Divides(𝑦, 𝑥)),

where ‘𝜇𝑦’ (“mu y”) means “the least 𝑦 such that …”. So 𝜇𝑦 (Prime(𝑦) ∧Divides(𝑦, 𝑥))
is the least number 𝑦 such that 𝑦 is prime and 𝑦 divides 𝑥. That number 𝑦 will never be
greater than 𝑥. So we can equivalently define spf(𝑥) as the least number 𝑦 less than or

132

7 Recursive Functions

equal to 𝑥 that is prime and divides 𝑥:

spf(𝑥) = 𝜇𝑦 ≤ 𝑥 (Prime(𝑦) ∧ Divides(𝑦, 𝑥)).

The 𝜇𝑦 ≤ 𝑥 operator expresses a bounded search. To compute 𝜇𝑦 ≤ 𝑥 𝑅(𝑦), we check
𝑅(0), then 𝑅(1), then 𝑅(2), and so on, up to 𝑅(𝑥), until we find a number 𝑦 of which 𝑅(𝑦)
holds; then we return that number. To ensure that the operation defines a total function,
let’s stipulate that 𝜇𝑦 ≤ 𝑥 𝑅(𝑦) is 0 if there is no number 𝑦 ≤ 𝑥 for which 𝑅(𝑦) holds.

Exercise 7.10 Let ℎ(𝑥) = 𝜇𝑦≤𝑥 (𝑦 + 𝑦 = 𝑥). What is ℎ(0)? What is ℎ(3)?

Proposition 7.5
If 𝑅(𝑥1, … , 𝑥𝑛, 𝑦) is a primitive recursive relation, then the function defined by

𝑓 (𝑥) = 𝜇𝑦 ≤ 𝑥 𝑅(𝑥1, … , 𝑥𝑛, 𝑦)

is primitive recursive.

Proof. I’ll assume that 𝑛 = 1, to simplify the notation. Let 𝜒 be the characteristic
function of 𝑅(𝑥, 𝑦). Let 𝑓 be defined as follows:

𝑓 (𝑥, 0) =
⎧{
⎨{⎩

0 if 𝜒(𝑥, 0) = 1,
1 otherwise.

𝑓 (𝑥, 𝑠(𝑘)) =
⎧{{
⎨{{⎩

𝑓 (𝑥, 𝑘) if 𝑓 (𝑥, 𝑘) ≤ 𝑘,
𝑘 + 1 if 𝜒(𝑥, 𝑘 + 1) = 1,
𝑘 + 2 otherwise.

Think of this as defining a sequence 𝑓 (𝑥, 0), 𝑓 (𝑥, 1), 𝑓 (𝑥, 2), …. At each step 𝑘 =
0, 1, 2, …, 𝑓 (𝑥, 𝑘) is the first 𝑦 with 𝑅(𝑥, 𝑦) if we’ve already found one, otherwise it
is 𝑘 + 1. So 𝑓 (𝑥, 𝑘) is the least number 𝑦 ≤ 𝑘 such that 𝑅(𝑥, 𝑦) holds, or 𝑘 + 1 if there
is no such number. Finally,

𝜇𝑦 ≤ 𝑥 𝑅(𝑥, 𝑦) =
⎧{
⎨{⎩

𝑓 (𝑥, 𝑥) if 𝑓 (𝑥, 𝑥) ≤ 𝑥,
0 otherwise.

133

7 Recursive Functions

These operations give us a powerful toolkit for defining primitive recursive functions
and relations. I’ll give three examples, related to coding sequences of (non-zero) num-
bers by prime powers, as introduced in section 5.5.
First, consider the function pri that takes a number 𝑛 as input and returns the 𝑛-th

prime number (counting from zero). This function is primitive recursive:

pri(0) = 2,
pri(𝑠(𝑦)) = 𝜇𝑥 ≤ pri(𝑦)! + 1 (Prime(𝑥) ∧ 𝑥 > pri(𝑦)).

Here I use Euclid’s observation that if 𝑝 is prime then the next prime is no greater than
𝑝! + 1.
Second, we can define a primitive recursive function entry(𝑥, 𝑦) that returns the expo-

nent of the 𝑦-th prime in the prime factorization of 𝑥:

entry(𝑥, 𝑦) = 𝜇𝑧 ≤ 𝑥 (Divides(pri(𝑦)𝑧, 𝑥) ∧ ¬Divides(pri(𝑦)𝑧+1, 𝑥)).

I call this ‘entry’ because it returns the 𝑦-th entry in the sequence coded by 𝑥 when we
use Gödel’s scheme to code a sequence of numbers 𝑛1, 𝑛2, … , 𝑛𝑘 as 2𝑛1 ⋅ 3𝑛2 ⋯ 𝑝𝑛𝑘

𝑘 . For
example, entry(23 ⋅ 32 ⋅ 51 ⋅ 74, 1) = 2.
Finally, we can define a primitive recursive function len(𝑥) that returns the length of

the sequence coded by 𝑥:

len(𝑥) = 𝜇𝑦 ≤ 𝑥 ∀𝑧 ≤ 𝑥 (𝑧 ≥ 𝑦 → entry(𝑥, 𝑧) = 0).

Thus len(23 ⋅ 32 ⋅ 51 ⋅ 74) = 4.

Exercise 7.11 What are entry(1, 0) and len(1)?

7.3 Unbounded search

Any arithmetical function you can think of is almost certainly primitive recursive. But
not all computable functions on the natural numbers are primitive recursive. A concrete
counterexample is the Goodstein function.
To explain this function, I need the fact that any number 𝑥 can be expressed as a sum

of powers of 𝑛, for any choice of 𝑛 > 1. For example, choosing 𝑛 = 2, we can express
266 as 28 + 23 + 21. Here, the exponents are 8, 3, and 1. If we write these as powers of

134

7 Recursive Functions

2 as well, we get the “hereditary base-2 representation” of 266:

266 = 222+1 + 22+1 + 21.

Starting with any number 𝑛, we can now define a sequence of numbers, called the Good-
stein sequence for 𝑛. The first item in the sequence is 𝑛. For the second item, we replace
each 2 in the hereditary base-2 representation of 𝑛 by 3, and subtract 1. So the second
item in the Goodstein sequence for 266 is

333+1 + 33+1 + 31 − 1 = 7, 625, 597, 484, 987.

For the third item, we replace each 3 in the hereditary base-3 representation of the second
item by 4, and subtract 1. And so on. While Goodstein sequences initially grow large
very quickly, Reuben Goodstein proved that their growth eventually stalls and reverses,
until it reaches 0. (This is Goodstein’s Theorem.) The Goodstein function now maps
any number 𝑛 to the length of the Goodstein sequence for 𝑛 before it reaches 0. It can
be shown that this function isn’t primitive recursive. But it is clearly computable: from
each item in the sequence, one can mechanically compute the next item. To compute the
Goodstein function for 𝑛, we therefore simply need to compute all items in the sequence
until we reach 0, keeping count of how many items we’ve computed.
For another example of a computable function that isn’t primitive recursive, note that

we can effectively enumerate the primitive recursive functions (with, say, a single argu-
ment): we start with the base functions, then we list all (one-place) functions that can
be obtained from these by one application of composition or primitive recursion, fol-
lowed by all functions that require two applications of these operations, and so on. Let
𝑓1, 𝑓2, 𝑓3, … be this enumeration. We can now define an antidiagonal function 𝑑 by setting

𝑑(𝑛) = 𝑓𝑛(𝑛) + 1.

Since all primitive recursive functions are total, this function is well-defined. It is evi-
dently computable. But it can’t be primitive recursive, since it differs from each primitive
recursive function 𝑓𝑛 at input 𝑛.
How would we compute 𝑑(𝑛)? We would first identify the 𝑛-th primitive recursive

function 𝑓𝑛. Then we would compute 𝑓𝑛(𝑛) until we get the output, to which we would
add 1. Like the computation of the Goodstein function, this computation involves an
unbounded loop: we simply have to wait until 𝑓𝑛(𝑛) returns an output; we can’t tell in
advance how long this will take.
If we want to capture all computable functions, we need to add an operation that al-

135

7 Recursive Functions

lows for this kind of unbounded search. The operation will search through all numbers
0, 1, 2, … until it finds a number 𝑥 for which a given condition 𝑃(𝑥) is satisfied.
We’ve brieflymet such an operation above, in the form of the unboundedminimization

operator ‘𝜇’: 𝜇𝑥 𝑃(𝑥) is the least number 𝑥 for which 𝑃(𝑥) holds. We’ll introduce a
version of this operation that applies to functions rather than relations.
Given a two-place function 𝑓 (𝑥, 𝑦), we can define a 1-place function ℎ that maps any

number 𝑥 to the least number 𝑦 for which 𝑓 (𝑥, 𝑦) equals a desired value 𝑘:

ℎ(𝑥) = 𝜇𝑦 (𝑓 (𝑥, 𝑦) = 𝑘).

Without loss of generality, we can assume that the desired value is always 0: if we want
to find the least 𝑦 such that 𝑓 (𝑥, 𝑦) = 𝑘, we can equivalently look for the least 𝑦 such that
𝑔(𝑥, 𝑦) = 0 where 𝑔(𝑥, 𝑦) is defined as 𝑓 (𝑥, 𝑦) ∸ 𝑘. So assume that 𝑓 is a total function of
𝑛 + 1 arguments. (We’ll deal with non-total functions later.) Then the 𝑛-place function
ℎ defined by

ℎ(𝑥1, … , 𝑥𝑛) = 𝜇𝑥 𝑓 (𝑥1, … , 𝑥𝑛, 𝑥) = 0
is the minimization of 𝑓 . We write ℎ = Mn[𝑓].
If 𝑓 is computable then so is Mn[𝑓]. We simply need to compute 𝑓 (𝑥1, … , 𝑥𝑛, 𝑖) for

each 𝑖 = 0, 1, 2, … until we find an 𝑖 for which 𝑓 (𝑥1, … , 𝑥𝑛, 𝑖) = 0:

function Mn_f(x1, ..., xn):
let i = 0
while f(x1, ..., xn, i) != 0:

i = i + 1
return i

If there is no 𝑖 for which 𝑓 (𝑥1, … , 𝑥𝑛, 𝑖) = 0, this algorithm runs forever. Thus Mn[𝑓]
may fail to be total, even if 𝑓 is total. For example, Mn[+], the minimization of the
addition function, returns 0 for input 0, but is undefined for every other input: if 𝑥 > 0,
there is no 𝑦 such that 𝑥 + 𝑦 = 0.
A function 𝑓 (𝑥1, … , 𝑥𝑛, 𝑦) is called regular if it is total and for all 𝑥1, … , 𝑥𝑛 there

is some 𝑦 such that 𝑓 (𝑥1, … , 𝑥𝑛, 𝑦) = 0. When minimization is applied to a regular
function 𝑓 , the result is always total. In that case, we say that Mn[𝑓] is defined by regular
minimization from 𝑓 .
So far, I’ve assumed that Mn is applied to a total function. We can also apply min-

imization to partial functions, but we need a further constraint to ensure that Mn[𝑓] is
computable. Suppose 𝑓 (𝑥, 𝑦) is 0 for some 𝑥, 𝑦, and undefined for the same 𝑥 and some
𝑧 < 𝑦. Then we may not be able to effectively search for the least 𝑦 with 𝑓 (𝑥, 𝑦) = 0 by

136

7 Recursive Functions

checking 𝑓 (𝑥, 0), 𝑓 (𝑥, 1), 𝑓 (𝑥, 2), …: if the computation of 𝑓 (𝑥, 𝑧) never halts, the search
never proceeds beyond 𝑧. We therefore stipulate that if 𝑓 is an arbitrary 𝑛 + 1-place func-
tion, then Mn[𝑓] is the function that takes 𝑛 numbers 𝑥1, … , 𝑥𝑛 as input and returns the
least number 𝑦 for which
(i) 𝑓 (𝑥1, … , 𝑥𝑛, 𝑦) = 0, and
(ii) 𝑓 (𝑥1, … , 𝑥𝑛, 𝑧) is defined for all 𝑧 < 𝑦.

If there is no such 𝑦, Mn[𝑓](𝑥1, … , 𝑥𝑛) is undefined.

Exercise 7.12 Let 𝑓 (𝑥, 𝑦) = 𝑥 ⋅ 𝑦. What is Mn[𝑓]? Is it total? Is it regular? What
is Mn[Mn[𝑓]]?

Exercise 7.13 Consider the function ℎ(𝑥) = 𝜇𝑦 (2𝑦 = 𝑥). What does this func-
tion do? Is it total? Is it regular? Can you define ℎ with the Mn notation?

Exercise 7.14 Use minimization to define a one-place function ℎ(𝑥) that is un-
defined for every input 𝑥.

If we add minimization to our toolkit for constructing functions, we get the class of
partial recursive functions. If we add regular minimization, we get the class of (total)
recursive functions.

Definition 7.3
A function is partial recursive if it can be defined from the base functions 𝑠, 𝑧,
and 𝜋𝑛

𝑖 by finitely many applications of composition, primitive recursion, and
minimization.

Definition 7.4
A function is (total) recursive (a.k.a. 𝜇-recursive) if it can be defined from the
base functions 𝑠, 𝑧, and𝜋𝑛

𝑖 by finitely many applications of composition, primitive
recursion, and regular minimization.

As before, we can extend the concept of recursiveness to sets and relations.

137

7 Recursive Functions

Definition 7.5
A set is recursive if its characteristic function is (total) recursive. A relation is
recursive if its extension is (total) recursive.

Exercise 7.15 Is the class of recursive relations closed under truth-functional
operations?

Exercise 7.16 Can you give an example of a set that is recursive but not primitive
recursive?

Above, I mentioned two functions that are computable but not primitive recursive: the
Goodstein function and the antidiagonal of the primitive recursive functions. Both these
functions are recursive. There is no known example of a computable function that is not
recursive, and there are good reasons to believe that no such function exists. As we’re
going to show next, any such function would also be uncomputable by a Turing machine.

7.4 Turing-computability

We’ll now show that the class of partial recursive functions coincides precisely with the
class of Turing-computable functions. We take the two directions in turn, starting with
the easier direction: every partial recursive function is Turing-computable.
The proof idea is simple. Since every partial recursive function is built up from the

base functions by composition, primitive recursion, and minimization, all we need to
show is that the base functions are Turing-computable, and that the Turing-computable
functions are closed under composition, primitive recursion, and minimization.

Theorem 7.1
Every partial recursive function is Turing-computable.

Proof sketch. The proof is by induction on the construction of partial recursive func-
tions. I assume the same coding convention as in section 6.2, so that a number 𝑛 is
represented by a block of 𝑛 + 1 strokes. I write ̄𝑥 for 𝑥1, … , 𝑥𝑛.

138

7 Recursive Functions

Base functions. You designed a Turing machine for the successor function in exer-
cise 6.4. A machine for the zero function erases the input, writes a stroke, and halts.
A machine for the projection functions erases all but one of its input blocks. These
machines are trivial to design.
Composition. Suppose we have Turing machines for computing 𝑔1, … , 𝑔𝑚 and 𝑓 . We
can design a machine for computing ℎ = Cn[𝑓 , 𝑔1, … , 𝑔𝑚] on any input ̄𝑥 as follows.
The machine first calls each 𝑔𝑖 machine (as a subroutine) on input ̄𝑥, and stores the
results next to each other, separated by blanks. It then calls the 𝑓 machine on this
pattern of strokes and blanks. The output is 𝑓 (𝑔1(̄𝑥), … , 𝑔𝑚(̄𝑥)).
Primitive recursion. Suppose we have Turing machines for computing 𝑓 and 𝑔. Let
ℎ = Pr[𝑓 , 𝑔]. That is, ℎ(̄𝑥, 0) = 𝑓 (̄𝑥) and ℎ(̄𝑥, 𝑦+1) = 𝑔(̄𝑥, 𝑦, ℎ(̄𝑥, 𝑦)). The machine
for computing ℎ works as follows. Given input ̄𝑥, 𝑦, it first calls the 𝑓 -machine on ̄𝑥
and stores the result in a block that will eventually hold ℎ(̄𝑥, 𝑦); call this the “result
block”. The input 𝑦 is kept on the tape in a separate “𝑦 block”. In yet another block,
we initialize a counter to 0 (represented by a single stroke). The machine then enters a
loop. If the counter has the same length as the 𝑦 block, the machine erases everything
except the result block and halts. Otherwise it calls the 𝑔 machine on ̄𝑥, the current
counter value, and the current result block, and stores the output in the result block.
The machine then increments the counter (by adding one stroke) and enters the next
iteration of the loop. The loop will run exactly 𝑦 times before halting. At that point,
the result block will contain ℎ(̄𝑥, 𝑦).
Minimization. Suppose we have a Turing machine for computing 𝑓 . Let ℎ = Mn[𝑓].
that is, ℎ(̄𝑥) = 𝜇𝑦 [𝑓 (̄𝑥, 𝑦) = 0]. We can construct a machine for computing ℎ as
follows. First, the machine initialises a “𝑦 block” to 0, represented by a single stroke.
It then goes into a loop. In each iteration, it runs the machine for 𝑓 on ̄𝑥 and the current
𝑦 block. If the output is 0, the machine halts and erases everything except the 𝑦 block.
Otherwise, the machine adds a stroke to the 𝑦 block and enters the next iteration of the
loop. If there is some 𝑦 such that 𝑓 (̄𝑥, 𝑦) = 0 and 𝑓 (̄𝑥, 𝑧) is defined for all 𝑧 < 𝑦, this
machine will output the least such 𝑦.
Now for the other direction: every Turing-computable function (on ℕ) is recursive.

Let 𝑀 be a Turing machine that computes some (possibly partial) function 𝑓 on ℕ. For
simplicity, let’s assume that 𝑓 is a 1-place function. Our task is to find a recursive defi-
nition of 𝑓 . Here’s an outline of how this can be done.
Remember that each stage of a Turing machine computation is captured by a configu-

ration. A configuration records the current state of the machine, the position of the head,
and the contents of the tape. The initial configuration of our machine 𝑀 on some input

139

7 Recursive Functions

𝑥, for example, specifies that the machine is in state 𝑞0 and that its head is scanning the
leftmost stroke of a block of 𝑥 + 1 strokes on an otherwise blank tape. We can code
any such configuration as a natural number. Let init be a function that takes a number
𝑥 as input and outputs the code number of 𝑀’s initial configuration for input 𝑥. With a
suitable coding scheme, this function will be primitive recursive.
Let next(𝑐) be a function that takes the code number 𝑐 of a configuration as input and

outputs the code number of the next configuration, according to the rules of 𝑀. If there
are no applicable rules (i.e., if 𝑀 halts in configuration 𝑐), we let next(𝑐) equal 𝑐. The
function next is also primitive recursive.
From init and next, we can define (by primitive recursion) another function conf that

takes an input 𝑥 and a step number 𝑦, and outputs the code number of 𝑀’s configuration
after 𝑦 steps on input 𝑥:

conf(𝑥, 0) = init(𝑥)
conf(𝑥, 𝑠(𝑦)) = next(conf(𝑥, 𝑦)).

We need two more functions. Let runs map the code number of any halting configu-
ration of 𝑀 to 0 and any other number to 1. Let out take the code number of a halting
configuration as input and extract the content of the tape as output. Both of these are
primitive recursive. We can now define the function 𝑓 computed by 𝑀:

𝑓 (𝑥) = out(conf(𝑥, 𝜇𝑦[runs(conf(𝑥, 𝑦)) = 0])).

This says that 𝑓 (𝑥) is the output extracted from the configuration at the first step at which
𝑀 halts on input 𝑥.
The following proof sketch fills in a few more details.

Theorem 7.2
Every Turing-computable function is partial recursive.

Proof sketch. Let 𝑀 be a Turing machine computing a (partial) function 𝑓 on ℕ.
Each configuration of 𝑀 can be coded as a quadruple ⟨𝑞, 𝐿, 𝑠, 𝑅⟩, where 𝑞 is the
current state, 𝑠 ∈ {0, 1} is the scanned symbol (0 for blank, 1 for a stroke), and 𝑅 is
a finite sequence of 0s and 1s giving the contents of the tape to the right of the head
(0 for blank, 1 for stroke) up to the last non-blank symbol, and 𝐿 is a finite sequence
of 0s and 1s giving the contents of the tape to the left of the head, in reverse order, up

140

7 Recursive Functions

to the last non-blank symbol. For example, if the tape is 0 1 0 1 1 1 1 0 0 and the
head is at the shaded cell, 𝑠 would be 1, 𝑅 would be 1, and 𝐿 would be 1101. We can
read 𝑠, 𝑅, and 𝐿 as numbers in binary notation. (In the example, 𝑠 = 1, 𝑅 = 1, and
𝐿 = 23 + 22 + 20 = 13.) If we code the state 𝑞 as a number (using 𝑖 for 𝑞𝑖), the entire
configuration becomes a quadruple of natural numbers. We can code this quadruple as
a single natural number using Gödel’s prime-exponent coding (section 5.5). To extract
the components of a coded configuration, we can use the primitive recursive functions
len and entry from section 7.2.
The initial configuration for input 𝑥 has state 𝑞0, scanned symbol 1 (since the input is
a block of 𝑥 + 1 strokes), an empty left sequence, and a right sequence consisting of 𝑥
many 1s (the input block minus the scanned stroke). The corresponding quadruple of
numbers is

⟨0, 0, 1, 2𝑥 − 1⟩.
The init function therefore takes 𝑥 as input and outputs the code number of this quadru-
ple:

init(𝑥) = 20 ⋅ 30 ⋅ 51 ⋅ 72𝑥−1.
This function is evidently primitive recursive.
To define next, we need a predicate HasRule(𝑥, 𝑦) that tests whether the machine table
of 𝑀 has a rule for state 𝑥 and symbol 𝑦. (So HasRule(2, 1) is true iff the machine has
a rule for what to do in state 𝑞2 when scanning a stroke.) Since the machine table is
finite, this is a finite boolean combination of equalities, hence primitive recursive.
We can similarly define functions nextState(𝑥, 𝑦), write(𝑥, 𝑦), and move(𝑥, 𝑦) that ex-
tract the relevant components of the rule for state 𝑥 and symbol 𝑦 in the machine table
(and return some arbitrary default value if no such rule exists).
With these in place, we can define next by cases. Given a coded configuration 𝑐 as input,
from which we can extract the quadruple ⟨𝑞, 𝐿, 𝑠, 𝑅⟩ using entry, the next function first
checks if HasRule(𝑞, 𝑠). If no, it returns 𝑐. If yes, it computes move(𝑞, 𝑠), write(𝑞, 𝑠),
and nextState(𝑞, 𝑠). If the move is to the right, the new 𝐿 becomes the old 𝐿 with the
written symbol appended at the front (in binary), the new scanned symbol becomes
the first symbol of 𝑅, and the new 𝑅 becomes the rest of 𝑅. If the move is to the left,
the new 𝑅 becomes the old 𝑅 with the written symbol appended at the front, the new
scanned symbol becomes the first symbol of 𝐿, and the new 𝐿 becomes the rest of 𝐿.
These operations on binary numbers (appending/deleting/extracting the first symbol)
are primitive recursive. So next is primitive recursive.

141

7 Recursive Functions

We define conf as described above:

conf(𝑥, 0) = init(𝑥)
conf(𝑥, 𝑠(𝑦)) = next(conf(𝑥, 𝑦)).

The function runs is easily defined from HasRule:

runs(𝑐) =
⎧{
⎨{⎩
1 if HasRule(entry(𝑐, 0), entry(𝑐, 2)),
0 otherwise.

It remains to define the out function that extracts the output number represented by the
tape contents in a halting configuration 𝑐. This simply needs to add the number of 1s
in the left sequence, the scanned symbol, and the right sequence, and subtract 1.
Finally, we can define the function 𝑓 computed by 𝑀, as announced above:

𝑓 (𝑥) = out(conf(𝑥, 𝜇𝑦[runs(conf(𝑥, 𝑦)) = 0])).

Equivalently,
𝑓 = Cn[Cn[out, conf], 𝜋1

1,Mn[Cn[runs, conf]]].

Notice that the entire construction only uses a single unbounded 𝜇, at the very end.
We’ve therefore discovered an interesting corollary:

Theorem 7.3: (Kleene’s Normal Form Theorem)
Every partial recursive function can be defined using a single instance of Mn.

Proof. Immediate from the proof of Theorem 7.2.

What about total recursive functions? We can show that the total recursive functions
are precisely the Turing-computable total functions. It follows that a function is recursive
iff it is partial recursive and total.

Theorem 7.4
A total function is recursive iff it is Turing-computable.

142

7 Recursive Functions

Proof sketch. The left-to-right direction is immediate from Theorem 7.1. For the right-
to-left direction, we show that whenever minimization yields a total function, it can be
replaced by regular minimization.
Let 𝑓 be a partial recursive function, and ℎ = Mn[𝑓]. By Theorem 7.1, there is a
Turing machine 𝑀 that computes 𝑓 . Assume ℎ is total. This means that for any 𝑥 there
is a 𝑦 such that 𝑀 halts on input 𝑥, 𝑦 with output 0, and 𝑀 halts on input 𝑥, 𝑧 with
some nonzero output for all 𝑧 < 𝑦. (I assume without loss of generality that 𝑓 has one
argument.) It follows that for any 𝑥 there is a 𝑦 and a bound 𝑡 such that

(i) 𝑀 halts within 𝑡 steps on input 𝑥, 𝑦 with output 0, and
(ii) for all 𝑧 < 𝑦, 𝑀 halts within 𝑡 steps on input 𝑥, 𝑧 with some nonzero output.

We can express (i) and (ii) in terms of conf, out, and out from the proof of Theorem 7.2.
That is, we can define a primitive recursive 3-ary predicate 𝐻 so that 𝐻(𝑥, 𝑦, 𝑡) holds
iff 𝑥, 𝑦, and 𝑡 satisfy conditions (i) and (ii). Define

𝑔(𝑥, 𝑤) =
⎧{
⎨{⎩
0 if 𝐻(𝑥, entry(𝑤, 0), entry(𝑤, 1)),
1 otherwise.

So 𝑔(𝑥, 𝑤) returns 0 iff 𝑤 encodes a pair ⟨𝑦, 𝑡 ⟩ such that (i) and (ii) hold of 𝑥, 𝑦, and 𝑡.
The function 𝑔 is regular. We can define ℎ by regular minimization from 𝑔:

ℎ = Cn[entry, 𝜋1
1,Mn[𝑔]].

Since the Turing-computable functions and the recursive functions coincide, it doesn’t
matter if we state the Church-Turing thesis (Section 5.2) as the claim that every com-
putable function is recursive or as the claim that every computable function is Turing-
computable. The two claims are equivalent.

Exercise 7.17 Is the Busy Beaver function (section 6.4) recursive?

Exercise 7.18 Using the Church-Turing thesis, explain why the set of regular
recursive functions is not decidable. Is it computably enumerable?

143

7 Recursive Functions

7.5 Feasible computation

I mentioned in section 7.1 that the base functions 𝑠, 𝑧, and 𝜋𝑛
𝑖 are computable “in one

step”, without subroutines or loops. We can also count the number of steps needed to
computemore complex functions. For example, if ℎ is defined by composition from 𝑓 and
𝑔, so that ℎ(𝑥) = 𝑓 (𝑔(𝑥)), then one can compute ℎ by first computing 𝑔(𝑥), then feeding
the result into 𝑓 ; the total number of steps is the sum of the number of steps needed to
compute 𝑓 and 𝑔, for the given input 𝑥. We may also count the steps in a Turing machine
computation that executes a given algorithm. Again, the number of steps will generally
depend on the input.
Either way, the “step count” gives us a way to measure the computational complexity

of an algorithm. The field of computational complexity theory studies different types
of complexity. For example, in the class of linear-time algorithms, the number of steps
it takes to compute an output is (at most) proportional to the size of the input. In the
broader class of polynomial-time algorithms, the number of steps is bound by a polyno-
mial function of the input size. For example, if the input has size 𝑛, the number of steps
might be bound by 𝑛2, or by 10𝑛10 + 3𝑛7.
The class of polynomial-time algorithms turns out to be very natural. It doesn’t depend

on details of how we count steps or how we measure the size of the input; it is also
closed under composition and “subroutine insertion”, wherein an arbitrary part of an
algorithm is replaced by another algorithm. In analogy to the Church-Turing theses, the
polynomial-time algorithms have been suggested to formalize the informal concept of a
feasible algorithm.
Consider, for example, the task of checking whether a given sentence 𝑆 of proposi-

tional logic is true in a given model 𝜎, which assigns a truth-value to every sentence
letter. It’s easy to show that this can be achieved by a polynomial-time algorithm, us-
ing the truth-table method. This algorithm is feasible. By contrast, consider the task of
checking whether an 𝔏0-sentence 𝑆 is true relative to some assignment of truth-values
– that is, whether it is satisfiable. How could we do this? The obvious “brute-force”
algorithm is to try out all possible assignments of truth-values to the sentence letters in
𝑆. This algorithm is not polynomial, but exponential in the number of sentence letters.
For 100 sentence letters, it requires 2100 ≈ 1030 steps. This is clearly not a feasible
algorithm.
Oddly, it is not known whether there is also a feasible, polynomial-time algorithm for

deciding whether an 𝔏0-sentence is satisfiable. Nobody has yet found such an algorithm,
and it is generally believed that none exists. But we don’t know for sure. This is an
instance of the notorious P vs NP problem, which has yet to be resolved.

144

