5 Computability

In the next three chapters, we take a look at computability theory: the study of what can
and what can’t be computed by a mechanical algorithm. This will allow us to show that
there is no algorithm for deciding whether a first-order sentence is valid. It will also
provide a basis for proving Godel’s incompleteness theorems.

5.1 The Entscheidungsproblem

Suppose you wonder whether a certain first-order sentence is (logically) valid. You might
try to construct a proof of the sentence in the first-order calculus. By the soundness of the
calculus, such a proof would establish that the sentence is valid. By the completeness of
the calculus, there is a proof for any valid sentence. But how can you find such a proof?
How do you know where to start? Is there a general algorithm for finding a proof — a
recipe that you can follow mechanically, without relying on insight or intuition, that is
guaranteed to find a proof if there is one?

There is. A proof is a finite sequence of sentences. We can go through all these
sequences, one by one, until we find a proof of the target sentence.

Let me spell out this algorithm in more detail. I assume that we’re dealing with a
countable first-order language (although this isn’t essential for the algorithm). We begin
by assigning to each symbol in the language a natural number that represents its position
in some fixed “alphabetical” order. I'll call this the code number of the symbol.

For each natural number 7, there are only finitely many strings with length n, made
up of symbols whose code number is at most n. The algorithm goes through all these
strings, for increasing values of n. In the first stage, we generate all strings of length 1
made of symbols whose code number is at most 1. (There is only one such string.) In the
second stage, we generate all strings of length 2 made of symbols whose code number
is at most 2. And so on.

Whenever we have generated a string, we check if it is a proof of the target sentence.
That is, we check if the generated string divides into sentences (separated by, say, a
comma) in such a way that (i) each sentence is either an instance of A1-A7 or follows
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from previous sentences by MP or Gen, and (ii) the last sentence is the target sentence.
This is a simple, mechanical task.

If a sentence has a proof, this algorithm will eventually find it. (Needless to say, the
algorithm is terribly inefficient. There are much better algorithms. I’ve implemented
one that runs in your web browser: see www.umsu.de/trees/. But efficiency is not our
current concern.)

What if a sentence doesn’t have a proof, because it isn’t valid? Then the algorithm I've
described will run forever. It will search through longer and longer strings of symbols,
and never find a proof.

So we don’t yet have an algorithm for deciding whether a sentence is valid. We have,
in effect, an algorithm that outputs ‘yes’ whenever the sentence to which it is applied is
valid; but it doesn’t output ‘no’ when the sentence is invalid. Instead, the algorithm then
runs forever. Can we do better? Can we find an algorithm that always outputs either ‘yes’
or ‘no’, depending on whether the input sentence is valid or not? This is David Hilbert’s
Entscheidungsproblem (“decision problem”), raised in Hilbert and Ackermann’s mono-
graph Grundziige der Theoretischen Logik in 1928.

Suppose, for a moment, that we had such an algorithm. More generally, suppose we
had an algorithm for deciding whether a first-order sentence is entailed by a given set
of axioms. If we then had a complete axiomatization of some mathematical area, all
questions in that area could be answered mechanically. In 1928, it seemed plausible that
all areas of mathematics could be completely axiomatized, so that all truths about them
could be derived from the relevant axioms. With an algorithm for deciding validity and
entailment, we would then have a mechanical algorithm for answering all mathematical
questions. In principle, although perhaps not in practice, all of mathematics would re-
duce to simple mechanical calculation. No insight or intuition or brilliance would be
required any more. This vision was articulated by Leibniz in the 17th century. In 1928,
it seemed within reach.

So, is there an algorithm for deciding whether any given first-order sentence is valid?
The answer was established by Alonzo Church and Alan Turing in 1936: no. First-order
logic is, as we say, undecidable.

How could one prove this? It is obviously not enough to show that this or that al-
gorithm doesn’t do the job. One needs to prove that no algorithm does the job. This
requires developing a precise and general concept of an algorithm. Hilbert’s Entschei-
dungsproblem thereby led to the development of computability theory: the study of what
can and what can’t be computed by a mechanical algorithm.
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Exercise 5.1 Explain why the following problems are all equivalent: (a) decide
whether a first-order sentence is valid, (b) decide whether a sentence is provable
in the first-order calculus, (c¢) decide whether a first-order sentence is satisfiable
(true in some model), (d) decide whether a first-order sentence is consistent (one
can’t derive a contradiction from it in the first-order calculus).

Exercise 5.2 If a sentence isn’t valid, it has a countermodel — a model in which it
is false. Why can’t we solve the Entscheidungsproblem by simultaneously search-
ing for a proof and a countermodel? (The countermodel search would systemati-
cally look through all models and check if the target sentence is true or false, by
going through the recursive definition of truth in a model.)

5.2 Computable functions

Let’s try to get clearer about what we mean by an algorithm. In a sense, it’s trivial that
for every mathematical question there is an algorithm that gives the answer. Let QO be
a question and A its answer. Here is an algorithm for answering Q: write down A. For
example, if Q is ‘134 times 977, the algorithm for answering Q is to write down ‘12,998’.
No calculation required.

But that’s not really what we mean by an algorithm. An algorithm doesn’t just provide
the answer to a single question. An algorithm is an instruction for finding the answer to
every question of a certain type. Typically, there are infinitely many questions of that
type. An algorithm for multiplication, for example, is an instruction by which one can
find the answer to every ‘x times y?’ question. More generally, an algorithm takes inputs
and produces an output. Any such algorithm computes a function: a function from the
inputs to the outputs. So we’ll understand an algorithm as a recipe or instruction for
computing a function. The task of developing a precise notion of an algorithm turns into
the task of developing a precise notion of computable functions: functions for which
there is a recipe by which one can compute the function’s value for any input.

The recipe must meet certain conditions. It must be precise and determinate, so that it
can be followed mechanically, without relying on human judgement or insight. It must
be specified in a finite way that is fixed in advance, without depending on the input. It
must not invoke outside sources of information.

In school, you learned such algorithms for addition and multiplication. These func-
tions are computable. But note that neither you nor any computer is actually able to add
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or multiply arbitrarily large numbers. At some point, you’d run out of paper and energy;
the computer would run out of memory. The concept of computability that we’re trying
to capture is in principle computability, setting aside practical limitations of memory,
time, paper, patience, and pencils.

In the previous section, I described an algorithm for finding proofs. When given a
valid sentence, the algorithm returns a proof. When given an invalid sentence, it runs
forever. The algorithm therefore computes a partial function: it doesn’t return an output
for every input. Let’s stipulate that this is the correct way of computing partial functions:
if a function is undefined for a certain input, an algorithm for computing the function
must run forever when given that input. (In practice, we often let algorithms return a
special "undefined’ value: when asked to divide a number by zero, you wouldn’t spend
the rest of your life trying to compute the answer, which you know doesn’t exist. Strictly
speaking, you are not computing the division function, which is partial, but a modified
total function that returns "undefined’ for division by zero.)

Remember that functions are individuated “extensionally” by which outputs they re-
turn for which inputs. The same function can always be presented in many ways. If a
function is presented in a peculiar way, we may not know which algorithm computes it,
but as long as there is such an algorithm, the function is computable. For example, the
function on N given by

0 if Julius Caesar liked cheese

f(x)={

1 otherwise

is trivially computable.

Exercise 5.3 Show that this function is computable by specifying two algo-
rithms, one of which is sure to compute the function.

My definition of computability still looks vague. What, exactly, are “precise and de-
terminate” instructions that “can be followed mechanically”? This is what logicians had
to figure out in the 1930s.

They came up with a number of different suggestions. Alonzo Church suggested that
the computable functions (on the natural numbers, at least) are precisely the functions
that are definable in his lambda-calculus. Stephen Kleene, drawing on work by Godel
and Herbrand, suggested that the computable functions are those that can be defined by
a certain recursive process that we’ll study in chapter 7. More convincingly, Alan Turing
suggested that a function is computable iff it is computed by a certain abstract model of a
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mechanical computing device, now known as a “Turing machine”. We’ll look at Turing
machines in chapter 6.

These suggestions turned out to be equivalent, in the sense that they define the very
same class of functions. Later attempts to define computability in terms of register ma-
chines, Post systems, Markov algorithms, or combinatory definability also led to the
same class of functions. Moreover, nobody has ever presented a function that is com-
putable by the informal definition I gave above but not by one of these formal definitions.
There are strong reasons to think that no such function exists.

We thus have a remarkable case where a seemingly vague concept turns out not to be
vague at all. The concept of a “mechanically computable” function seems to pick out
precisely the functions that are, say, computable by a Turing machine or definable in the
lambda calculus.

The hypothesis that our informal concept of mechanical computability coincides with
these formal definitions is known as Church’s Thesis, or as the Church-Turing Thesis. It
is a “Thesis” rather than a theorem because it does not admit a mathematical proof. (A
rigorous proof would first require a mathematically precise definition of ‘mechanically
computable’.)

If we want to prove that there is no algorithm for computing a certain function, we
generally need to invoke the Church-Turing Thesis. Consider, for example, the function
that returns ‘yes’ for every valid first-order sentence and ‘no’ for every invalid one. An
algorithm for computing this function would solve the Entscheidungsproblem. In chap-
ters 6 and ??, we’ll prove that there is no such algorithm. But all we can actually prove
is that the function isn’t computable in any of the formal senses mentioned above. We
can prove, for example, that no Turing machine can compute the function. From this,
we will infer “by the Church-Turing Thesis” that there is no algorithm for solving the
Entscheidungsproblem.

Exercise 5.4 We could avoid having to appeal to the Church-Turing Thesis by
defining ‘mechanically computable’ as, say, ‘definable in the lambda calculus’.
Why would this be a bad idea? (You don’t need to know anything about the lambda
calculus to answer the question.)

Besides these unavoidable appeals to the Church-Turing Thesis, we will also occasion-
ally make avoidable or lazy appeals to the Thesis. If a particular function is obviously
computable, we sometimes won’t bother proving that it is computable in any of the formal
senses. For example, we might say that “by the Church-Turing Thesis”, the multiplica-
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tion function (which is obviously computable) is computable by a Turing machine. This
appeal to the Church-Turing Thesis is avoidable because we could actually prove that
there is a Turing machine that computes the function. (I will, incidentally, display such
a machine in chapter 6.) But this would be tedious, and we can save the effort by relying
on the overwhelming evidence in favour of the Church-Turing Thesis.

Exercise 5.5 Explain (informally) why, if there is an algorithm for computing
two one-place functions f* and g then there is also an algorithm for computing the
function & given by h(x) = f(g(x)).

5.3 Uncomputable functions

I’ve mentioned — so far without proof — that the function that takes a first-order sentence
as input and returns ‘yes’ or ‘no’ depending on whether the sentence is valid or not is
uncomputable. Are there other uncomputable functions?

Let’s think about functions that take one or more natural numbers as input and return
a natural number as output. Are all such functions computable? Any example function
that you might come up with (addition, multiplication, factorial, the n-th prime, etc.) is
almost certainly computable. We can show, however, that there must be uncomputable
functions on the natural numbers. In fact, it follows from simple cardinality considera-
tions that most functions on the natural numbers are uncomputable.

How many functions are there from N to N? Focus, for a start, on functions from
N to the set {0, 1}. Every such function corresponds to a unique set of natural numbers:
the set of numbers that the function maps to 1. Conversely, every set of natural numbers
corresponds to a unique such function. That is, there is a bijection between the functions
from N to {0, 1} and the sets of natural numbers. By Cantor’s theorem, there are un-
countably many sets of natural numbers. So there are also uncountably many functions
from N to {0, 1}. (One can also show that there is a bijection between the functions from
N to {0, 1} and the functions from N to N. So the set of functions from N to N has the
cardinality of % (N). But what matters is that it is uncountable.)

The set of algorithms for functions on N, on the other hand, is countable. I've said
that an algorithm must be specifiable in a finite way. So each algorithm can be given as a
finite string of symbols. Moreover, we don’t need uncountably many primitive symbols
to define an algorithm for manipulating numbers. Since there are only countably many
finite strings of symbols in a countable language, it follows that there are only countably
many algorithms for functions on N.
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If the set of functions from N to N is uncountable and the set of algorithms is count-
able, it follows that uncountably many functions from N to N are not computable by any
algorithm.

By itself, this isn’t yet a serious blow to Hilbert’s (and Leibniz’s) dream that all of
mathematics might be reduced to mechanical calculation. Most functions on N have no
mathematical significance. They can’t be defined in the language of arithmetic, or even
in the language of set theory. If we can’t even ask a question, we probably shouldn’t
worry if there is no algorithm for finding the answer.

Exercise 5.6 Explain why most functions from N to N can’t be defined in the
language £, of first-order arithmetic.

The finite specifiability of algorithms creates a puzzle that will lead us to a key result
in computability theory, and also to a concrete example of an uncomputable function.

Let’s still focus on algorithms for computing functions on N. (We’ll see in section 5.5
why this is not a serious restriction.) Any such algorithm can be written down as a finite
string of symbols, in some suitable language. That language may be a restricted part
of English, or a programming language like Python or JavaScript, or a special language
for defining Turing machines, as will be explained in chapter 6. Any of them will do.
For any sensible choice of such a language, there will be a mechanical way of checking
whether a given string of symbols (in the language) specifies an algorithm. It follows that
we can mechanically go through all algorithms, one by one, just as we can go through
all proofs in the first-order calculus.

Now consider the following algorithm — I’ll call it the antidiagonal algorithm. For
any input number 7, the antidiagonal algorithm generates the list of all algorithms (for
functions on N) up to the n-th entry: Ay, A,,...,A,,. It then runs the n-th algorithm A,
with input n and returns the output plus 1.

Think of the algorithms and their outputs arranged in a table:

Algorithm 0 1 2 3

Al X10 X1 X12 X13
A2 Xo0 X201 X202 X23

A3 X30 X31 X332 X33
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X1 ¢ is the output of algorithm A1 for input 0, x; 5 is the output of algorithm A2 for input
3, and so on. The antidiagonal algorithm takes an input n, goes to the n-th row, then
computes the value x,, ,, in the n-th column of that row, and returns this value plus 1.

This algorithm evidently computes a function on N: it takes a number as input and re-
turns a number as output. So it must be somewhere on the list of algorithms A{,A,, Az, ....
Suppose it is the n-th algorithm on the list, for some n. What is the output of the algo-
rithm for input n? By construction, the algorithm returns the output of the n-th algorithm
for input n plus 1. But it is the n-th algorithm. So the output of the antidiagonal algo-
rithm for input 7 is the output of the antidiagonal algorithm for input n plus 1. This is a
contradiction.

What went wrong? The argument is a reductio, but what does it refute? You will have
noticed that the argument closely resembles Cantor’s proof that the set of sets of natural
numbers is uncountable. Does it show that the set of algorithms (for functions on N) is
uncountable after all?

No. The set of algorithms really is countable. But it’s true that the antidiagonal algo-
rithm can’t be on the list of algorithms. It’s not on the list because it isn’t a well-defined
algorithm. Can you see why?

The problem is that we’ve allowed for algorithms that may run forever on certain inputs.
Suppose some algorithm A,, on the list of algorithms runs forever when given input n.
Then we can’t add 1 to the output of A,, for input 7, because there is no such output: x,, ,,
is undefined. My definition of the antidiagonal algorithm assumed that each algorithm
A,, returns an output for input n, which need not be the case.

Let’s fix this bug. Let’s change the antidiagonal algorithm to work as follows. Given
any input n, we run the n-th algorithm on input n, as before. If that algorithm returns
an output x,, ,,, we return x,, , + 1. But if the n-th algorithm doesn’t return anything for
input n, we return 0.

This revised antidiagonal algorithm doesn’t assume that algorithms always return an
output. But the above argument still goes through: the revised algorithm can’t be on the
list of algorithms. It is still not a genuine algorithm. Why not?

Think about how we might implement the algorithm. We get a number 7 as input. It’s
not hard to enumerate the first n algorithms. Having identified the n-th algorithm, we
now want to run the n-th algorithm on input n. But what do we do if this runs forever? If
we simply wait for the output, our implementation will also run forever. It won’t return
0, as required. To implement the revised antidiagonal algorithm, we therefore need to
implement a subroutine to check whether a given algorithm halts on a given input. If
such a subroutine exists, we can implement the revised antidiagonal algorithm: when
given input n, we can use the subroutine to check if the n-th algorithm halts on input 7;
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if no, we output 0; if yes, we run the n-th algorithm until it returns an output, then we
return that output plus 1.

It’s not obvious, however, whether we can find an algorithm for checking whether a
given algorithm halts on a given input. In fact, there is no such algorithm. We know this
because otherwise the revised antidiagonal algorithm could be implemented: it would
be a genuine algorithm. It would be on the list of algorithms. And we know that this
leads to a contradiction.

By this curious line of reasoning, we’ve established the following key result in com-
putability theory: There is no general algorithm for checking whether a given algorithm
halts on a given input.

As promised above, we also get a concrete example of an uncomputable function on
N. Fix some “alphabetical” order on the algorithms for functions on N. Given any such
ordering A, A,, ..., we can define an antidiagonal function d by

0 if A,, runs forever on input n
d(n) =

x+1 if A, returns x on input 7.

This is the function that the revised antidiagonal algorithm was supposed to compute.
The function exists, but the algorithm doesn’t: the function d is uncomputable.

Exercise 5.7 Explain why there is no mechanical way to enumerate the fotal
functions on N.

Exercise 5.8 Show that every total non-increasing function on N is computable.
A function f is non-increasing if, for all x, f(x) > f(x + 1).

5.4 Decidable and semidecidable sets

Hilbert’s Entscheidungsproblem is the problem of deciding, for any first-order sentence,
whether it is valid or not. We can generalize this concept. In contemporary terminology,
a decision problem is a task of deciding, for any object of a certain type, whether it has
or lacks a certain property. In the case of the Entscheidungsproblem, the objects are
first-order sentences and the property of interest is validity. Another decision problem
is to decide for any natural number whether it is prime, or for any graph whether it can
be coloured with three colours. There are infinitely many decision problems.
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A solution to a decision problem is an algorithm that takes an object of the relevant
type as input and returns either ‘yes’ or ‘no’, depending on whether the object has the
property or not.

We have to clarify what, exactly, this means. Consider the property of being a spouse
of Julius Caesar. Is there an algorithm for deciding whether a given person has this
property? In one sense, yes, in another, no. I said that an algorithm must not invoke
outside sources of information. One needs empirical information to decide whether a
given person is a spouse of Julius Caesar. In this sense, there is no algorithm for deciding
the property. On the other hand, consider the algorithm that returns ‘yes’ for Cornelia,
Pompeia, and Calpurnia, who were, in fact, Caesar’s spouses, and ‘no’ for everyone
else. This algorithm correctly decides for any given person whether they are a spouse of
Caesar, without invoking outside sources of information. But the algorithm only works
contingently: it only works in worlds like ours, where Caesar had exactly these three
spouses.

Let’s say that an algorithm decides a property extensionally if it correctly classifies ev-
ery object in the actual world, even if it misclassifies objects in other possible worlds. To
decide a property extensionally is really to decide whether an object belongs to a certain
set: to the property’s extension. Henceforth, when I talk about deciding properties, I al-
ways mean deciding them extensionally (although the present complication won’t often
arise, because we’ll mostly be concerned with mathematical properties whose extension
doesn’t vary from world to world).

In computability theory, it is common to speak directly of deciding sets. An algorithm
decides a set if it returns ‘yes’ for every object in the set and ‘no’ for every other object.
A set is decidable if there is an algorithm that decides it.

Decidability is closely related to computability. An algorithm for deciding a set com-
putes a function that takes objects of a relevant type as input and outputs ‘yes’ for objects
in the set and ‘no’ for objects not in the set. This function is called the characteristic
function of the set. Officially, the outputs are often taken to be 1 and O rather than ‘yes’
and ‘no’. That is, the characteristic function fg of a set S is defined by

1 ifxeS

IO =10 itxes.

The connection between decidability and computability can now be stated as follows:
a set is decidable iff its characteristic function is computable.
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Exercise 5.9 Explain why every finite set is decidable.

Exercise 5.10 Are there undecidable sets? Explain briefly.

Exercise 5.11 Show that if a set S of natural numbers is decidable, then so is its
complement S, i.e., the set of natural numbers not in S.

We can generalize the concept of decidability to relations. An n-ary relation R is
(extensionally) decidable if there is an algorithm that outputs ‘yes’ for every n-tuple of
objects that stand in the relation and ‘no’ for every n-tuple of objects that don’t.

An important example of a decidable relation is the relation that holds between a
sequence Ay, ..., A, of first-order sentences and a first-order sentence B iff A, ..., A,
is a proof of B in the first-order calculus. I relied on the decidability of this relation
when I described the algorithm for finding proofs in section 5.1: I noted that there is a
mechanical algorithm for checking whether a given sequence of sentences Ay, ..., A,, is a
proof of a sentence B in the first-order calculus. We only need to check that each sentence
inAy,...,A, is either an axiom or follows from previous sentences by MP or Gen, and
that the last sentence A, is the target sentence B. The decidability of the proof relation
is not an accidental feature of our calculus. It is a critical property of proof systems
in general. In any acceptable proof system, there should be a mechanical procedure by
which, say, a student or computer can check (or verify) that a purported proof is really a
proof of the target sentence. No brilliance or ingenuity should be required for this task.

Consider now the halting relation that holds between an algorithm and an input (say,
a number) iff the algorithm halts when given that input. We know that this relation is
not decidable: there is no algorithm for deciding whether a given algorithm halts on a
given input. On the other hand, there is an algorithm for listing all algorithms that halt
on a given input n. We know that we can mechanically enumerate all algorithms, in
some order A;,A,,As,.... For each number i = 1,2, 3, ..., we can therefore take the first
i algorithms A4, ..., A; and apply them to input n, letting them run for i steps. (Every
algorithm can be divided into steps; it doesn’t matter how exactly these are defined.)
That is, we start by running A, on n for a single step. Then we run A, and A, on n for
two steps (after one another, say). Then we run A, A,, and A5 on n for three steps, and
so on. Whenever an algorithm returns an output, we add it to the list of algorithms that
halt on input n. This way, every algorithm that halts on input n will eventually be listed.
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So, even though there is no algorithm for deciding whether an arbitrary algorithm
halts on input n, there is an algorithm for listing all and only the algorithms that do halt
on input n. The property of halting on input 7 is not decidable, but it is semidecidable.

In general, a property is (extensionally) semidecidable if there is a mechanical proce-
dure for listing all objects that have the property. Equivalently, there is an algorithm that
outputs ‘yes’ for every object that has the property and never outputs ‘yes’ for an object
that doesn’t have the property.

Semidecidable properties are also called computably enumerable, or recursively enu-
merable, or just r.e. I'll mostly use the term ‘computably enumerable’.

As with decidability, the concept of semidecidability, or computable enumerability,
can be generalized to relations and to sets. A set is computably enumerable if there is an
algorithm for listing all its elements.

Exercise 5.12 Explain why the set of valid first-order sentences is computably
enumerable.

Exercise 5.13 Explain why every decidable set is computably enumerable.

The following propositions state some easy connections between decidability and com-
putable enumerability.

Proposition 5.1: (Kleene’s Theorem)

If a set and its complement are both computably enumerable then the set is decid-
able.

Proof. Let S be a set such that both S and its complement S are computably enumerable:
there are mechanical procedures for listing the elements of S and of S. We can use these
to define an algorithm for deciding S: Given any object x, we run the two procedures
in alternation, listing the first element of S, then the first element of S, then the second
element of S, then the second element of S, and so on. At some stage, we must find x
in either of the two lists. If it shows up in the list of elements of S, we return ‘yes’. If
it shows up in the list of elements of S, we return ‘no’. U
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Proposition 5.2

If R is a decidable (binary) relation on N, then the set of all y such that IxR(x, y)
is computably enumerable.

(By ‘3xR(x,y)’ I mean ‘there is a number x such that R holds between x and y’. I occasion-
ally use expressions from first-order logic in the meta-language when it is convenient.)

Proof. Here is an algorithm for listing all y such that 3xR(x,y). At step 1, compute
whether R(0, 0) holds. Atstep 2, compute R(0, 1) and R(1,0). In general, at each step &,
compute R(x,y) for all x,y < k. Whenever R(x, y) holds, output y. This algorithm will
eventually list every y such that 3xR(x,y). (It will list some y more than once. That’s
allowed; we could avoid it by keeping track of which y have already been listed.) [

Proposition 5.2 has a converse:

Proposition 5.3

If a set S is computably enumerable then there is a computable relation R such that
x € Siff JyR(x,y).

Proof. Assume that S is computably enumerable: there is an algorithm that lists all
and only the elements of S. Let R be the relation that holds between x and y iff the
algorithm has produced x among the first y items. Then x € S iff IyR(x,y). Moreover,
R is computable: given any x and y, simply run the enumerate-S algorithm for y steps;
if x shows up in the list, return ‘yes’, otherwise return ‘no’. [

Exercise 5.14 Show that if two relations R and S are computably enumerable
then so is their conjunction, i.e., the relation that holds between x and y iff both

R(x,y) and S(x,y).

Exercise 5.15 Let K be the set of algorithms that halt when given themselves as
input. Is this set decidable? Is it computably enumerable?
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Exercise 5.16 Let N be the set of algorithms that don’t halt when given them-
selves as input. Is this set decidable? Is it computably enumerable?

Let’s connect these concepts to the study of first-order theories from the previous
chapter.

Remember that a formal theory is a (deductively closed) set of sentences. Typically,
a theory is presented by giving a set of axioms. We say that a theory T is (computably)
axiomatizable if there is a decidable set of axioms that generates the theory, so that 7'
contains all and only the sentences that are provable from those axioms. For theories
like Q and PA and ZFC, this is obviously the case: there is an algorithm for checking
whether any given sentence is among the axioms of these theories.

We can also directly apply the concept of decidability to theories: a theory is decidable
if there is an algorithm by which one can check, for any sentence, whether it is in the
theory or not.

Every decidable theory is computably axiomatizable: we can use the theory itself as
the set of axioms. The converse doesn’t hold: a computably axiomatizable theory need
not be decidable. It will, however, always be semidecidable, as the following proposition
shows.

Proposition 5.4

Every computably axiomatizable first-order theory is computably enumerable.

Proof. Let T be a computably axiomatizable first-order theory, generated by a decid-
able set of axioms I'. To enumerate all sentences in 7', we can go through all strings
in the language of T, one by one, and check for each if it is a deduction from I" in the
first-order calculus. This is possible because membership in I' is decidable. If we find
that a string is a deduction from I we output the last sentence in that deduction. Every
sentence in T will eventually be listed. ]

Ideally, we’d like a theory of, say, arithmetic to be complete, in the sense that it con-
tains all truths about its intended model. Since every sentence A is either true or false
in the intended model, the theory would then contain either A or —A, for every sentence
A in its language. This is how completeness of theories is usually defined: a theory is
complete if, for every sentence A in its language, the theory contains either A or —A.
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Proposition 5.5

Every computably axiomatizable and complete first-order theory is decidable.

Proof. Let T be a computably axiomatizable and complete first-order theory, generated
by a decidable set of axioms I'. If T is inconsistent, it is trivially decidable: every
sentence is in 7. Assume that 7" is consistent. To decide whether a sentence A is in 7,
we go through all strings in the language of 7', and check for each if it is a deduction
of either A or —=A from I'. Since the theory is complete, we must eventually find one
or the other. If we find a deduction of A, we return ‘yes’; if we find a deduction of —-A,
we return ‘no’. [

At this point, we are closing in on Godel’s incompleteness theorem. Let T be a first-
order theory that can prove elementary facts about computability. Specifically, assume
the language of T contains terms for algorithms and natural numbers, and allows con-
structing a formula H (x,y) so that 7" can prove H (a,n) iff the algorithm denoted by a
halts on input n. If T were decidable, we could decide the halting relation: we could
check whether an algorithm a halts on input n, by checking whether H(a,n) is in T.
Since the halting relation is undecidable, 7 must be undecidable. By proposition 5.5, it
follows that any computably axiomatizable theory that “knows” elementary facts about
computability is incomplete.

Exercise 5.17 Let T be the theory axiomatized by the empty set. Given the unde-
cidability of first-order logic (which we still haven’t proved), is 7' (a) computably
axiomatizable? (b) decidable? (c) complete?

Exercise 5.18 Show that every theory with a computably enumerable set of ax-
ioms can be axiomatized by a decidable set of axioms. Hint: replace each original
axiom A by a sentence of the form A A A A ... A A. (This is known as Craig’s
re-axiomatization theorem, after William Craig, who proved it in 1953.)

5.5 Coding

Think of how you might compute 134 times 97, using pen and paper. You’d probably
begin by writing down ‘134’ and ‘97°. What thereby appears on the paper are not the
numbers themselves, but strings of symbols that represent the numbers. ‘134’ denotes
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the number 134 in decimal notation. The same number is denoted by ‘CXXXIV’ in
Roman numerals, or by ‘10000110’ in binary An algorithm for multiplication operates
on the chosen representation. The algorithms for addition and multiplication that you
learned in school assume that the inputs are given in decimal notation.

We may assume that, in general, an algorithm operates on strings of symbols. If we
want to define an algorithm for computing functions on some other kinds of object (say,
numbers or graphs or cities) these objects must first be encoded as suitable strings of
symbols.

We can say a little more about these strings. Since an algorithm must be finitely
specifiable, it can only make use of finitely many differences in the input. It follows that
the possible inputs to an algorithm must be representable as finite strings of symbols
from a finite (or at most countable) alphabet. For example, the decimal representation
of any number is a finite string of symbols from the alphabet ‘0’, “1°, ‘2’, ‘3°, ‘4’, ‘5’ ‘6,
T, ‘8, 9.

How many finite strings can be formed from a countable alphabet? Countably many.
We can show this by specifying an injective function from the set of such strings to the
set of natural numbers. Such a function is called a coding function, as it codes strings as
numbers.

To define a coding function, we first assign a unique natural number to each symbol
in the alphabet. How this is done depends on the alphabet. Often, the symbols come
in some natural “alphabetical” order. We can then assign 1 to the first symbol, 2 to the
second, and so on. Let #s be the number assigned to symbol s. I'll call #s the symbol
code of s.

With symbol codes in hand, the task of coding sequences of symbols reduces to the
task of coding sequences of natural numbers as single numbers. I’ll describe a standard
way of doing this, due to Godel.

Godel’s coding scheme exploits the fact that every natural number greater than 1 has
a unique prime factorization. Recall that a prime number is a number greater than 1
that only divides by 1 and itself. Every natural number greater than 1 can be uniquely
decomposed into a product of prime numbers, called its prime factors. For example, 54
decomposes into 2 x 3 x 3 x 3, or 21 x 33, We can therefore code sequences of numbers
(greater than 0) by prime exponents: since the exponents in the prime factorization of 54
are 1 and 3, the number 54 codes the sequence (1, 3). In general, a sequence of n numbers
is coded as the product of the first n primes raised to the power of those numbers: the
first prime raised to the power of the first number, the second prime raised to the power
of the second number, and so on.

An example may help. Suppose we want to code the string ‘cabb’, from an alphabet
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that has the symbols ‘a’, ‘b’, ‘c’, and possibly others. We first assign code numbers to
‘a’, ‘b’, and ‘c’. Let’s use 1, 2, and 3, respectively. The string ‘cabb’ thereby turns into
the sequence (3, 1,2,2). This is coded as

23 x 31 x 52 x 72 = 29,400,

using 3 as the exponent of the first prime, 1 as the exponent of the second, and 2 as the
exponent of the third and fourth.

To decode a number back into a string of symbols, we use some algorithm for prime
factorization. Given the input 29,400, such an algorithm would return the prime factor-
ization 23 x 31 x 52 x 72. This tells us that the first character in the coded string has
symbol code 3, the second has symbol code 1, and the third and fourth have symbol
code 2. Using the symbol codes, we reconstruct the original string: ‘cabb’.

Above, I suggested that the inputs to any algorithm are finite strings of symbols from a
countable alphabet. We’ve now seen that all such strings can be coded as natural numbers.
This means that there’s a sense in which every algorithm computes a function on the
natural numbers — viz., the function that maps the code number of any input string to the
code number of the algorithm’s output string.

Since there is an algorithm for coding and decoding, this line of thought also shows
that we lose no generality by focusing on algorithms for functions on N. That’s why,
in computability theory, the computable functions and relations are usually defined as
functions and relations on N. If we want an algorithm that computes a different kind
of function, we know that the inputs and outputs must be representable as strings of
symbols, which can be coded as natural numbers. We can therefore compute the desired
function by coding the inputs as numbers, feeding the code numbers into an algorithm
for computing a function on N, and decoding the output.

Exercise 5.19 Consider an algorithm that takes a string of symbols from the
alphabet {‘a’, ‘b’, ‘c’} as input and replaces the first character in the string by ‘a’
(so that it returns ‘aabb’ for ‘cabb’). Can you describe the operation on N that this
algorithm computes, using the prime number coding?

We can now sharpen the proto-Godelian argument for incompleteness from the end of
the previous section. Consider the ternary relation H* that holds between an algorithm
a, an input i for a, and a number 7 iff the algorithm a halts on input i within n steps,
relative to some fixed way of counting steps in the execution of algorithms. This relation
is computable: given any a, i, and n, we can simply run a on input i for n steps, and return
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‘yes’ if a has halted by then, and ‘no’ otherwise. Like every algorithm, this algorithm
for computing H* effectively computes a function f on N — viz., the function that maps
the code numbers of the inputs a, i, n to the code number of the output (‘yes’ or ‘no’),
relative to some fixed coding scheme. Let H* be the set of triples (x,y,z) of natural
numbers that f maps to the code number of ‘yes’. The algorithm for computing H* gives
us an algorithm for deciding the set H™.

As I mentioned in section 4.1, all computable functions and relations on the natural
numbers can be defined in the language £, of arithmetic. (We’ll prove this in chapter 8.)
So there is an expression A(x,y,z) in £, that holds of numbers x,y,z iff (x,y,z) €
H™. From this, we can create another expression 3zA(x, y, z) by prefixing an existential
quantifier. Can you see what this says? It expresses a numerical analog of the halting
relation H: 3zA(x,y, z) is true of x and y iff x codes an algorithm that halts on the input
coded by y.

Now, we know that the halting relation H is not decidable. It follows that there can be
no true, computably axiomatizable, and complete theory in the language of arithmetic.
For suppose there was such a theory. By proposition 5.5, the theory would be decidable.
And then we could decide the halting relation: to check whether an algorithm with code
n halts on input m, we would merely have to check whether 3zA (n,m, z) isin T.
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