
4 Theories

In this chapter, we take a look at first-order theories: sets of sentences in a formal, first-
order language that are assumed to describe a particular domain of objects. A theory
might describe the behaviour of physical systems or moral norms, but we’ll focus on
mathematical theories – specifically, arithmetic and set theory.

4.1 Arithmetic

Formost of history, people did maths in an informal manner, relying on a loose collection
of techniques for solving specific types of problems. When giving proofs, assumptions
that seemed obviously true – for example, that 0 ≠ 1 – were simply taken for granted.
In the 19th and early 20th century, mathematics was put on a more rigorous footing.

Cauchy, Weierstrass, Dedekind, and others gave precise definitions of mathematical con-
cepts (such as limits and continuity). They also formalized the exact assumptions that
were needed to derive well-known results. These assumptions were collected into axioms
for the relevant area of maths.
At the same time, more powerful mathematical theories were developed, such as the

set theory of Cantor (formalized by Zermelo, Fraenkel, and others) or the type theory
of Russell and Whitehead. All known branches of maths, it seemed, could be unified
in such a theory, allowing for new results to be derived from the emerging connections
between previously separate domains. Theorems from topology could be used to prove
results in algebra.
Formally, a theory is a set of sentences that is closed under entailment, so that it con-

tains everything that is entailed by it. In this chapter, we’ll be concerned with theories
in a formal, first-order language. We often write ⊢𝑇 𝐴 or 𝑇 ⊢ 𝐴 (rather than 𝐴 ∈ 𝑇 ) to
say that a sentence 𝐴 is a member of the theory 𝑇 .
This fits our earlier use of the turnstile: If 𝐴 is in 𝑇 , then 𝑇 ⊢ 𝐴 (by Mon and Id);

conversely, if 𝑇 ⊢ 𝐴, then by the completeness of first-order logic, 𝑇 ⊨ 𝐴, and then 𝐴
is in 𝑇 because 𝑇 is closed under entailment. We could write 𝑇 ⊨ 𝐴 instead of 𝑇 ⊢ 𝐴.
Conceptually, however, theories belong to the “syntax” or “proof theory” side of logic.
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4 Theories

A theory is simply a set of sentences. This set is usually specified by laying down some
non-logical axioms. The theory then contains all and only the sentences that can be
derived from these axioms. We say that a theory 𝑇 is axiomatized by a set of sentences
Γ if it contains exactly the sentences that are derivable from Γ.

Exercise 4.1 Let 𝔏 be some first-order language (with identity). Let 𝑇1 be the
theory axiomatized by the set of all 𝔏-sentences, 𝑇2 the theory axiomatized by the
empty set of sentences, and 𝑇3 the theory axiomatized by {∀𝑥 𝑥 ≠ 𝑥}. Which of
𝑇1, 𝑇2, and 𝑇3 are the same?

Let’s take a closer look at formal theories of arithmetic. Arithmetic is the study of
the natural numbers 0, 1, 2, 3, etc. We know a lot about the natural numbers. We know,
for example, that 1 + 2 = 3, that there are infinitely many primes, or that the factorial
function 𝑥! grows faster than any polynomial 𝑥𝑛. The aim of an axiomatized formal
theory of arithmetic is to capture all such truths, showing exactly which assumptions (or
axioms) are needed to derive which results.
An important part of the axiomatic project is to reduce the number of primitive con-

cepts. In section 3.4, I already mentioned that we don’t need separate individual con-
stants for each number: we can instead use a single constant ‘0’ for the number 0 and a
function symbol ‘𝑠’ for the successor function; the number 1 is then denoted by ‘𝑠(0)’,
the number 2 by ‘𝑠(𝑠(0))’, and so on. This is useful because it means that we don’t
need special axioms for each number: having defined 1, 2, and 3 as 𝑠(0), 𝑠(𝑠(0)), and
𝑠(𝑠(𝑠(0))), respectively, we may hope to derive that 1 + 2 = 3 from general assumptions
about zero and the successor function. If ‘1’, ‘2’, and ‘3’ were primitive symbols, it is
hard to see how ‘1 + 2 = 3’ could be derived from more basic principles.
In section 3.4, I suggested that a first-order theory of arithmetic might use primitive

symbols for 0, the successor function, addition, multiplication, and the less-than relation.
In fact, the less-than relation can be defined in terms of the other concepts and logical
expressions, since the following holds for all natural numbers 𝑥 and 𝑦:

𝑥 < 𝑦 iff ∃𝑧(𝑥 + 𝑠(𝑧) = 𝑦).

We can therefore treat ‘𝑡1 < 𝑡2’, for any terms 𝑡1 and 𝑡2, as a metalinguistic abbreviation
of ‘∃𝑥(𝑡1 + 𝑠(𝑥) = 𝑡2)’. (The variable 𝑥 must not occurring in 𝑡1 or 𝑡2.)
Less obviously, we can define the concept of a prime number. Remember that a num-

ber is prime if it is greater than 1 and divisible only by 1 and itself. A number 𝑥 is
divisible by a number 𝑦 if there is a number 𝑧 such that 𝑧 × 𝑦 = 𝑥. Thus we can express
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‘𝑡 is prime’ as:

𝑠(0) < 𝑡 ∧ ∀𝑦(∃𝑧(𝑧 × 𝑦 = 𝑡) → (𝑦 = 𝑠(0) ∨ 𝑦 = 𝑡)).

Exercise 4.2 Define the concepts of (a) an even number and (b) a square number.

Other concepts are harder to define. It is not obvious how one could define exponen-
tiation 𝑥𝑦 or the factorial 𝑥! in terms of 0, 𝑠, +, and ×. We’ll see in chapter 8 how it
can be done. Indeed, we’ll see that all computable functions and relations on the natural
numbers can be defined in terms of our four primitives. That is, whenever there is an
algorithm for computing a function, or for determining whether a relation holds between
some numbers, then the function or relation can be defined in terms of 0, 𝑠, +, and ×.

Exercise 4.3 Can you find another primitive that we could use instead of ‘𝑠’?
(That is, can you find a primitive symbol 𝜑 so that 𝑠(𝑡) can be defined from 0, 𝜑,
+, and ×?)

Let’s turn to the second part of the axiomatic project. Having reduced the set of prim-
itive concepts, we need to lay down axioms that describe how the remaining concepts
behave. The aim is to reduce all truths about the natural numbers to a small number of
basic principles.
The first axioms we’ll consider are just about 0 and 𝑠. Later, we’ll add axioms for

+ and ×. What do we know about 0 and 𝑠? We know, for example, that every number
has a successor. But we don’t need to postulate this as an axiom: all function symbols
in first-order logic denote total functions. What isn’t guaranteed is that ‘𝑠’ denotes an
injective function: we need to postulate that no two numbers have the same successor.

Q1 ∀𝑥∀𝑦 (𝑠(𝑥)=𝑠(𝑦) → 𝑥 =𝑦)

We also know that 0 is not the successor of any number:

Q2 ∀𝑥 0≠𝑠(𝑥)

These two axioms are already quite powerful. Let’s think about what a model of them
must look like. There must be at least one object, denoted by 0. There must also be an
object 𝑠(0). Can this be the same as 0? No: otherwise 0 would be the successor of itself,
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which contradicts Q2. So 𝑠(0) is another object. What about 𝑠(𝑠(0))? This can’t be 0,
by Q2. And so it can’t be 𝑠(0) either, by Q1: if 𝑠(𝑠(0)) = 𝑠(0), then 𝑠(0) and 0 would
have the same successor. So 𝑠(𝑠(0)) is a third object. By iterating this reasoning, we can
see that any model of Q1 and Q2 must have a chain of infinitely many objects

0, 𝑠(0), 𝑠(𝑠(0)), 𝑠(𝑠(𝑠(0))), … ,

connected by the successor function.

Exercise 4.4 Can you find amodel in whichQ1 andQ2 are true, but∀𝑥(𝑠(𝑥) ≠ 𝑥)
is false?

Exercise 4.4 shows that Q1 and Q2 don’t suffice to capture all truths about 0 and 𝑠.
The problem is that the two axioms don’t rule out the existence of other objects, outside
the chain 0, 𝑠(0), 𝑠(𝑠(0)), …. On these other objects, the successor relation must still be
injective, but it can go in a loop, or it can form a second infinite chain 𝑎, 𝑠(𝑎), 𝑠(𝑠(𝑎)), ….
The following axiom rules out such additional chains, by stipulating that there is no
object other than 0 that is not a successor.

Q3 ∀𝑥 (𝑥 ≠ 0 → ∃𝑦 𝑥 =𝑠(𝑦))

This doesn’t help with the looping case, however. We’d like to have an axiom saying
that every number can eventually be reached from 0 by repeated application of 𝑠. But
there’s no way to express this in first-order logic (as we proved in section 3.4). Still, we
can get close by adding the following axiom schema, called the induction schema:

Ind (𝐴(0) ∧ ∀𝑥 (𝐴(𝑥) → 𝐴(𝑠(𝑥)))) → ∀𝑥 𝐴(𝑥)

Here, 𝐴(𝑥) is any formula with one free variable. Think of every such formula as
expressing a property. Ind then says that if some (expressible) property holds of 0, and if
it is inherited from any number to its successor, then it holds of all numbers. The schema
is obviously related to the method of inductive proof, where we show that all numbers
have a property by showing that 0 has it and that it is inherited from any number to its
successor.
Ind rules out the looping case. Consider the simplest version, where there’s an object 𝑎

outside the chain 0, 𝑠(0), 𝑠(𝑠(0)), … that is its own successor. In this model, ∀𝑥(𝑠(𝑥) ≠ 𝑥)
is false. But ∀𝑥(𝑠(𝑥) ≠ 𝑥) follows from Q1, Q2, and Ind, as follows.
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Let 𝐴(𝑥) be the formula 𝑠(𝑥) ≠ 𝑥. Then 𝐴(0) is 𝑠(0) ≠ 0. This is entailed by Q2.
∀𝑥(𝐴(𝑥) → 𝐴(𝑠(𝑥))) is ∀𝑥(𝑠(𝑥) ≠ 𝑥 → 𝑠(𝑠(𝑥)) ≠ 𝑠(𝑥)). This is entailed by Q1. By Ind,
we can derive ∀𝑥(𝑠(𝑥) ≠ 𝑥).

Exercise 4.5 How does Ind rule out loops with two elements? That is, why
isn’t there a model of Q1, Q2, and Ind with two objects 𝑎 and 𝑏 outside the chain
0, 𝑠(0), 𝑠(𝑠(0)), … that are successors of each other?

Ind also rules out models with a second chain 𝑎, 𝑠(𝑎), 𝑠(𝑠(𝑎)), …. We can see this from
the fact that it entails Q3:

Proposition 4.1
Ind entails Q3.

Proof. let 𝐴(𝑥) be the formula 𝑥 ≠ 0 → ∃𝑦 𝑥 = 𝑠(𝑦). Q3 is ∀𝑥𝐴(𝑥). To derive this via
Ind, we need to derive

(i) 𝐴(0), and
(ii) ∀𝑥(𝐴(𝑥) → 𝐴(𝑠(𝑥))).

Both of these are valid (and therefore provable) in pure first-order logic. (i) holds
because ⊨ 0 = 0; so the antecedent of 𝐴(0) is false and 𝐴(0) is true. For (ii), note that
the consequent of 𝐴(𝑠(𝑥)) is ∃𝑦(𝑠(𝑥) = 𝑠(𝑦)), which is trivial; so 𝐴(𝑠(𝑥)) can never be
false; so 𝐴(𝑥) → 𝐴(𝑠(𝑥)) is always true.
Let’s turn to addition and multiplication. A common way to define a function on

the natural numbers is to describe how it applies to 0 and then define its value for any
successor number in terms of its value for the previous number. For example, the factorial
function 𝑛! that maps every number 𝑛 to the product 1 × 2 × … × 𝑛 can be defined by the
following two clauses:

(i) 0! = 1
(ii) 𝑠(𝑛)! = 𝑛! × 𝑠(𝑛)

This is called a definition by (primitive) recursion. It may at first look circular, but
it is not. Take, for example, the input 2 to the factorial function. By clause (ii) of the
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definition, 2! is 1! × 2. To evaluate this, we need to know 1!. By clause (ii) again, 1! is
0! × 1. By the first clause, 0! is 1. Putting all this together, we have

2! = (1 × 1) × 2 = 2.

We can similarly define the addition function by primitive recursion on its second
argument:

(i) 𝑥 + 0 = 𝑥
(ii) 𝑥 + 𝑠(𝑦) = 𝑠(𝑥 + 𝑦)

These two claims are easily translated into the language of arithmetic, which gives us
our next two axioms:

Q4 ∀𝑥(𝑥 + 0 = 𝑥)
Q5 ∀𝑥∀𝑦(𝑥 + 𝑠(𝑦) = 𝑠(𝑥 + 𝑦))

The same trick works for multiplication, which we can define as repeated addition:

Q6 ∀𝑥(𝑥 × 0 = 0)
Q7 ∀𝑥∀𝑦(𝑥 × 𝑠(𝑦) = (𝑥 × 𝑦) + 𝑥)

Exercise 4.6 Explain how the primitive recursive definition of addition deter-
mines the value of 3 + 2.

The theory axiomatized by Q1–Q7 is called Robinson Arithmetic, or Q. It will play an
important role in chapter ??. The standard first-order theory of arithmetic, called Peano
Arithmetic, or PA, replaces Q3 by Ind: its axioms are Q1, Q2, Ind, and Q4–Q7. (The
theory is named after Giuseppe Peano, although Peano points out that essentially the
same theory was proposed earlier by Dedekind).
Are all truths in the language of arithmetic entailed by the axioms of PA? For a while,

this seemed plausible. Gödel’s first incompleteness theorem revealed that the answer
is no: there are arithmetical truths that aren’t provable in PA. So PA ≠ Th(𝔄). We’ll
prove this in ch. ??. As we’ll see, the problem can’t be fixed by adding a few more
axioms or axiom schemas. PA isn’t just incomplete; there’s a good sense in which it is
incompletable.
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Exercise 4.7 Show that the following are in PA:
(a) ∀𝑥 𝑥 < 𝑠(𝑥); (b) ∀𝑥∀𝑦(𝑥 < 𝑦 → 0 < 𝑦); (c) ∀𝑥∀𝑦(𝑥 + 𝑦 = 𝑦 + 𝑥).

Exercise 4.8 We’ve seen that Q1–Q3 don’t rule out structures in which the suc-
cessor function goes in a loop for some objects outside 0, 𝑠(0), 𝑠(𝑠(0)), ….

(a) Show that adding Q4–Q7 doesn’t help: define a model 𝔐 of Q1–Q7 with
two objects 𝑎 and 𝑏 that are successors of each other.

(b) Using the definition of ‘<’ from earlier in this section, determine whether
𝑎 < 𝑏, 𝑎 < 𝑎, and 0 < 𝑎 are true in your model 𝔐.

(c) Is∀𝑥∀𝑦(𝑥+𝑦 = 𝑦+𝑥) true in yourmodel𝔐? If yes, change the interpretation
of + to make it false while keeping Q1–Q7 true.

4.2 Set theory

In the 19th century, set-theoretic concepts were increasingly used by mathematicians to
make their theories and definitions more precise. For example, Dedekind defined the
real numbers in terms of sets of rational numbers, which allowed for new, more rigorous
proofs of many results in real analysis.
The concept of a set was initially not seen as belonging to a separate mathematical

theory (set theory). Rather, it was treated as a logical concept. To speak of the set of
such-and-suchs, it was assumed, is just to speak of the such-and-suchs taken together. As
Georg Cantor put it in 1895: a set is ‘a collection of definite, well-differentiated objects
[…] into a whole’. It was assumed that, as a matter of logic, whenever there are some
(definite, well-differentiated) objects, there is also a set of these objects.
Dedekind had defined the real numbers in terms of sets of rational numbers. The

rational numbers can, in turn be defined in terms of sets and integers, and the integers
in terms of sets and natural numbers. Frege realized that one can define the natural
numbers entirely in terms of sets. (See section 4.3 below for one way to do this.) Familiar
properties of the natural numbers – and, by extension, of the integers, rationals, and reals
– can then be derived from apparently logical properties of sets. Hence there emerged
the philosophical project of logicism: the idea that all of maths could be reduced to logic
and definitions.
This was the life project of Frege, who invented the calculus of predicate logic in order

to show that all of arithmetic could be derived from purely logical axioms by simple
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logical rules like MP and Gen. Frege’s “logical axioms” included one assumption about
sets – his “axiom V”. This is a second-order axiom involving the term-forming operator
{𝑥 ∶ 𝐴(𝑥)}. We can express it as a first-order schema:

V {𝑥 ∶ 𝐴(𝑥)} = {𝑥 ∶ 𝐵(𝑥)} ↔ ∀𝑥(𝐴(𝑥) ↔ 𝐵(𝑥)).

𝐴(𝑥) and 𝐵(𝑥) are arbitrary formulas with one free variable. Axiom V says that differ-
ent sets never have the very same members. This makes sense if a set of things is just
those things “considered as a whole”. But the use of the set operator {𝑥 ∶ 𝐴(𝑥)} in an
otherwise standard first-order language also implies that for any formula 𝐴(𝑥) there is a
corresponding set {𝑥 ∶ 𝐴(𝑥)}. This is known as the naive comprehension principle.
Unfortunately for Frege, the naive comprehension principle is inconsistent, as Bertrand

Russell pointed out to him in a letter in 1902. Consider the formula 𝑥 ∉ 𝑥, saying that 𝑥
is not a member of itself. Assume that there is a set of all things to which this formula
applies. Call this set 𝑅. Is 𝑅 a member of itself? If it is, then by the definition of 𝑅, it
is not a member of itself. If it isn’t, then by the definition of 𝑅, it is a member of itself.
This is a contradiction. So 𝑥 ∉ 𝑥 is a formula for which there is no corresponding set
{𝑥 ∶ 𝑥 ∉ 𝑥}.

There is something odd about the idea that a set might contain itself. One imagines sets
as abstract ”containers”, and a container can hardly contain itself. Ernst Zermelo, who
had independently noticed Russell’s paradox, developed this intuition into a paradox-free
formal theory.
According to Zermelo, we should think of the sets as built in layers or stages. We

start with things that are not sets, called individuals or urelements. At the next stage,
we form all sets of these individuals. We may now have sets of rocks and cities, like
{Athens,Berlin}, but we don’t have any sets containing other sets. At the next stage, we
form all sets whose elements are either individuals or sets of individuals. This includes
all sets from the first stage, but it also includes sets like {{Athens,Berlin},Athens}, with
sets from the previous stage as elements. We continue in this manner. Whenever a set
occurs at some stage, it can be used as an element of sets at later stages. But not otherwise:
a set can only appear at a stage after all its elements have appeared. So we never get a
set that contains itself. Nor do we get a set of all sets that don’t contain themselves: this
would be the set of all sets; such a set would contain itself, which is impossible.
Oddly, this hierarchical construction works even if there are no individuals. Starting

with no individuals, we can construct one set of individuals: the empty set ∅. From this,
we can form another set: {∅}. And once we have ∅ and {∅}, we can form {∅, {∅}} and
{{∅}}. And off we go. For purely mathematical applications, it turns out that this pure
hierarchy is often enough.
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Let’s make the structure of the set-theoretic hierarchy, called the cumulative hierarchy,
or simply 𝑉 , more precise. Each stage of the hierarchy is a set of sets. The first stage,
𝑉0, is the set of individuals. In the pure hierarchy, this is the empty set:

𝑉0 = ∅.

From any stage 𝑉𝑘, we recursively define the next stage 𝑉𝑘+1 as the set of all sets whose
elements are in 𝑉𝑘. This is just the power set of 𝑉𝑘:

𝑉𝑘+1 = 𝒫(𝑉𝑘).

In the pure hierarchy, 𝑉1 = 𝒫(∅) = {∅}, 𝑉2 = 𝒫({∅}) = {∅, {∅}}, and so on. This
yields an infinite sequence 𝑉0, 𝑉1, 𝑉2, … of ever-larger sets, all ultimately built from the
empty set.

𝑉0

𝑉1

𝑉2

𝑉𝜔

𝑉𝜔+1

𝑉2𝜔

⋮

⋮

⋮

⋮

⋮

⋮

But we don’t stop there. After all the stages
𝑉0, 𝑉1, 𝑉2, …, there is another stage 𝑉𝜔 (“𝑉
omega”). 𝑉𝜔 contains all sets that have appeared
at any earlier stage. That is, 𝑉𝜔 is the union of
all earlier stages:

𝑉𝜔 = ⋃
𝑘<𝜔

𝑉𝑘.

While all sets in the sequence 𝑉0, 𝑉1, 𝑉2, … are
finite, 𝑉𝜔 has infinitely many elements.
From 𝑉𝜔, we can form yet further sets by re-

peating the previous recipes. At stage 𝑉𝜔+1, we
collect all the subsets of 𝑉𝜔. (Many of these
are infinite and thus didn’t appear at any earlier
stage.) That is, 𝑉𝜔+1 = 𝒫(𝑉𝜔). We then form
𝑉𝜔+2 = 𝒫(𝑉𝜔+1), and so on. After all the stages 𝑉𝜔, 𝑉𝜔+1, 𝑉𝜔+2, …, there is an-
other stage 𝑉𝜔+𝜔, or 𝑉𝜔⋅2. It contains all sets that have appeared at any earlier stage:
𝑉𝜔⋅2 = ⋃𝑘<𝜔 𝑉𝜔+𝑘. From 𝑉𝜔⋅2, we construct 𝑉𝜔⋅2+1, 𝑉𝜔⋅2+2, etc. by taking power sets.
Then we construct 𝑉𝜔⋅3 by taking the union of all earlier stages. And so on and on.
And we don’t stop there. After all the stages 𝑉𝜔, … , 𝑉𝜔⋅2, … , 𝑉𝜔⋅3, …, there is an-

other stage 𝑉𝜔⋅𝜔, or 𝑉𝜔2 , where we take the union of all previous stages. From this,
we construct further stages by taking power sets and unions. Eventually, we reach 𝑉𝜔3 ,
then 𝑉𝜔4 , etc. Then we take the union of all these stages to get 𝑉𝜔𝜔 , and so on and on,
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through 𝑉𝜔𝜔𝜔 , through stages with infinitely high towers of 𝜔, and much, much further.
The cumulative hierarchy is vast.

Exercise 4.9 Consider the pure hierarchy. How many sets are in 𝑉3? How many
are in 𝑉4?

Exercise 4.10 Is the cardinality of 𝑉𝜔+1 greater than the cardinality of 𝑉𝜔?

Let’s now try to axiomatize this conception of sets. That is, we’ll try to find a set
of sentences in a suitable first-order language that describes the structure of the cumu-
lative hierarchy. The description I just gave, with its ‘and so on’s and ‘after all these
stages’ can’t be directly translated into first-order logic. We have to take a more indirect
approach.
The most popular axiomatization of set theory is ZFC, for ‘Zermelo-Fraenkel set the-

ory with the Axiom of Choice’. Its only primitive concept is the membership relation.
So we have a single non-logical symbol: the binary predicate symbol ‘∈’. From this,
other concepts are defined. For example, we can define the subset relation ⊆ as follows:

𝑡1 ⊆ 𝑡2 abbreviates ∀𝑥(𝑥 ∈ 𝑡1 → 𝑥 ∈ 𝑡2).
Let’s go through the axioms of ZFC. The quantifiers are assumed to range over the

pure sets. Our first axiom is known as the axiom of extensionality.

Z1 ∀𝑥∀𝑦((∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) → 𝑥 = 𝑦).

This says that a set is determined by its elements: no two sets have the same elements.
Unlike Frege’s Axiom V, Z1 doesn’t imply that for any formula 𝐴(𝑥) there is a corre-
sponding set {𝑥 ∶ 𝐴(𝑥)}. Instead of this unrestricted comprehension principle, we have a
more restricted principle, called the separation axiom. It’s actually a schema:

Z2 ∀𝑦∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ (𝑥 ∈ 𝑦 ∧ 𝐴(𝑥)))

This says that for any set 𝑦 and any formula 𝐴(𝑥), there is a set 𝑧 that contains just those
elements of 𝑦 of which 𝐴(𝑥) is true. That is, provided that we already have a set 𝑦, we
can use any formula to carve out a subset of 𝑦 containing those elements of 𝑦 of which
the formula is true.
The next axiom postulates the existence of the empty set, the base level of the hierar-

chy.
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Z3 ∃𝑥∀𝑦(𝑦 ∉ 𝑥).

This says that there is something (a set) that has no elements. By the extensionality
axiom, there is only one such thing. It’s convenient to have a name for it: ‘∅’. But ‘∅’
isn’t officially part of the language. The only singular terms in the language of set theory
are variables. So we can’t say that ‘∅’ is shorthand for some more complex term in the
language, in the way we could treat ‘3’ as shorthand for ‘s(s(s(0)))’. What we can do
instead is give a contextual or syncategorematic definition of ‘∅’, as follows:

𝐴(∅) abbreviates ∃𝑥(∀𝑦 𝑦 ∉ 𝑥 ∧ 𝐴(𝑥)).

Here, 𝐴(𝑥) is an expression with one free variable 𝑥, and 𝐴(∅) is that expression with
‘∅’ in place of 𝑥. For example, consider the expression

∀𝑥(∅ ⊆ 𝑥).

By the convention for ∅, it is shorthand for

∃𝑧(∀𝑦(𝑦 ∉ 𝑧) ∧ ∀𝑥(𝑧 ⊆ 𝑥)).

By the convention for ⊆, this is in turn shorthand for

∃𝑧(∀𝑦(𝑦 ∉ 𝑧) ∧ ∀𝑥∀𝑣(𝑣 ∈ 𝑧 → 𝑣 ∈ 𝑥)).

The same trick is needed to talk about operations on sets. To define the union operation
∪, for example, we need to find a formula that is true of sets 𝑥, 𝑦, and 𝑧 iff 𝑧 is the union
of sets 𝑥 and 𝑦. Such a formula is not hard to find:

∀𝑣(𝑣 ∈ 𝑥 ∨ 𝑣 ∈ 𝑦 ↔ 𝑣 ∈ 𝑧).

With this, we can give a contextual definition of ‘∪’:

𝐴(𝑡1 ∪ 𝑡2) abbreviates ∃𝑥(∀𝑦(𝑦 ∈ 𝑡1 ∨ 𝑦 ∈ 𝑡2 ↔ 𝑦 ∈ 𝑥) ∧ 𝐴(𝑥)),

where 𝑥 and 𝑦 do not occur in 𝐴.
We can similarly define the intersection operation ∩:

𝐴(𝑡1 ∩ 𝑡2) abbreviates ∃𝑥(∀𝑦(𝑦 ∈ 𝑡1 ∧ 𝑦 ∈ 𝑡2 ↔ 𝑦 ∈ 𝑥) ∧ 𝐴(𝑥)).
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Exercise 4.11 Give contextual definitions of ⋃ 𝑡 and 𝒫(𝑡). ⋃ 𝑡 is the union of
all sets in 𝑡; 𝒫(𝑡) is the set of all subsets of 𝑡.

The next two axioms guarantee that for every set 𝑥, there is a set ⋃ 𝑥 comprising all
elements of elements of 𝑥, and a set 𝒫(𝑥) comprising all subsets of 𝑥. Z4 is the union
axiom, Z5 the powerset axiom.

Z4 ∀𝑥∃𝑢∀𝑦(𝑦 ∈ 𝑢 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ 𝑦 ∈ 𝑧)).
Z5 ∀𝑥∃𝑝∀𝑦(𝑦 ∈ 𝑝 ↔ 𝑦 ⊆ 𝑥).

Next, we have the pairing axiom:

Z6 ∀𝑥∀𝑦∃𝑧∀𝑣(𝑣 ∈ 𝑧 ↔ (𝑣 = 𝑥 ∨ 𝑣 = 𝑦))

This says that for any sets 𝑥, 𝑦 there is a set {𝑥, 𝑦} that contains exactly 𝑥 and 𝑦. This is
needed, for example, to ensure that 𝑥∪𝑦 exists whenever 𝑥 and 𝑦 exist: the pairing axiom
gives us {𝑥, 𝑦}, from which we get 𝑥 ∪ 𝑦 = ⋃{𝑥, 𝑦} by Z4.
The sets 𝑥 and 𝑦 in Z6 needn’t be different. For the case where 𝑥 = 𝑦, the axiom says

that for every set 𝑥 there is a set {𝑥, 𝑥} = {𝑥} that contains exactly 𝑥. This is called the
singleton set of 𝑥. We’ll help ourselves to {𝑡} as a contextually defined term:

𝐴({𝑡}) abbreviates ∃𝑥(∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 = 𝑡) ∧ 𝐴(𝑥)).

We make use of this abbreviation in our next axiom, the axiom of infinity:

Z7 ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∪ {𝑦} ∈ 𝑥)).

Without the axiom of infinity, we couldn’t guarantee the existence of any infinite set. In
the next section, we’ll see that the set 𝑥 whose existence is guaranteed by Z7 can be
understood as the set ℕ of natural numbers.

Exercise 4.12 List three members of the set whose existence is guaranteed by
Z7.

Next, we have the axiom of foundation (or regularity). It ensures that every set (every
object in the domain) is part of the cumulative hierarchy. Consider any nonempty set 𝑥.
The elements of 𝑥 are other sets. If 𝑥 is in the cumulative hierarchy, then its elements must
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have appeared at earlier stages in the construction, and there must be some stage at which
the first of them appeared. Let 𝑦 be one of these earliest elements. Since all elements
of 𝑦 appear strictly before 𝑦, it follows that none of the elements of 𝑦 are elements of 𝑥.
That is, every nonempty set 𝑥 of sets must have an element 𝑦 that is disjoint from 𝑥:

Z8 ∀𝑥(𝑥 ≠ ∅ → ∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑥 ∩ 𝑦 = ∅))

There are two more axioms. Next is the axiom of replacement, due to Abraham
Fraenkel. It is motivated by the observation that the naive comprehension principle only
seems to go wrong in cases where the formula 𝐴(𝑥) from which it allows defining a set
{𝑥 ∶ 𝐴(𝑥)} is true of every set, or of things of which there are as many as there are sets.
For example, Russell’s 𝑥 ∉ 𝑥 is true of all the sets. Objects of which there are as many
as there are sets are sometimes said to form a proper class. (This concept is formalized
in some extensions of ZFC, such as the von Neumann-Bernays-Gödel set theory NBG.)
In essence, the axiom of replacement says that if there are no more objects of a certain
kind than there are members of some set 𝑥, then these objects also form a set. After all,
they can’t form a proper class if there are no more of them than there are members of 𝑥,
which is known to be a set.
To see how this may be used, suppose that we have a construction that defines a set

𝑠𝑛 for each natural number. So there are as many sets 𝑠0, 𝑠1, 𝑠2, … as there are natural
numbers. If we identify the natural numbers with the elements of the set whose existence
is guaranteed by Z7, we know that the natural numbers form a set. The replacement
axiom allows us to conclude that the 𝑠0, 𝑠1, 𝑠2, … also form a set. It is called ‘replacement’
because it allows replacing all members 𝑖 of a known set by other things 𝑓 (𝑖).
Let’s review how we compare the sizes of infinite collections. By the standards of

section 3.1, a set 𝑥 is no larger than a set 𝑦 iff there is an injective function from 𝑥 to
𝑦: a function that maps each element of 𝑥 to an element of 𝑦, without mapping different
elements of 𝑥 to the same element of 𝑦. In set theory, we don’t have functions as separate
objects. But we can simulate them by sets. Since functions are fully determined bywhich
outputs they return for which inputs, we can identify them with sets of input-output pairs.
For example, the square function on the natural numbers would be identified with the set
of ordered pairs ⟨0, 0⟩, ⟨1, 1⟩, ⟨2, 4⟩, ⟨3, 9⟩, etc.
To complete this definition, we need to provide a set-theoretic surrogate for the concept

of an ordered pair. An ordered pair ⟨𝑥, 𝑦⟩ isn’t simply the set {𝑥, 𝑦}: wewant to distinguish
⟨2, 4⟩ from ⟨4, 2⟩. In general, ordered pairs ⟨𝑥1, 𝑦1 ⟩ and ⟨𝑥2, 𝑦2 ⟩ are identical iff 𝑥1 = 𝑥2
and 𝑦1 = 𝑦2. Can we find set-theoretic constructs that satisfy this condition? Easy.
The standard construction, due to Kazimierz Kuratowski, identifies ⟨𝑥, 𝑦⟩ with the set

77



4 Theories

{{𝑥}, {𝑥, 𝑦}}. You can easily show that, on this definition, ⟨𝑥1, 𝑦1 ⟩ = ⟨𝑥2, 𝑦2 ⟩ iff 𝑥1 = 𝑥2
and 𝑦1 = 𝑦2.

Exercise 4.13 Find another set-theoretic construction of ⟨𝑥, 𝑦⟩ that satisfies the
identity condition for ordered pairs.

Return to the axiom of replacement. We want to use the axiom show that certain
objects form a set, given that there are no more of them than there are members of some
other set. Unfortunately, we can’t assume in this context we have already established the
existence of any functions from the objects to the other set. (If we knew that there is a set
of ordered pairs ⟨𝑥, 𝑦⟩ in which each of our objects figures as a first member, we could
infer that the objects form a set by the axioms of union and separation: we wouldn’t need
replacement).
Instead of invoking functions, the replacement axiom therefore uses formulas to ex-

press that there is a functional relationship. First, a convenient abbreviation:

∃!𝑥𝐴(𝑥) abbreviates ∃𝑥(𝐴(𝑥) ∧ ∀𝑦(𝐴(𝑦) → 𝑦=𝑥)),

∃!𝑥𝐴(𝑥) says that there is exactly one 𝑥 such that 𝐴(𝑥). So ∀𝑥∃!𝑦𝐴(𝑥, 𝑦) says that 𝐴(𝑥, 𝑦)
expresses a functional relationship: it relates each 𝑥 to exactly one 𝑦. If there is such a
functional relationship between the members of some set 𝑣 and some 𝑦s, there can be
no more 𝑦s than there are members of 𝑣. The axiom of replacement, which is really an
axiom schema, allows us to conclude that there is a set 𝑤 that contains all these 𝑦s:

Z9 ∀𝑣((∀𝑥(𝑥 ∈ 𝑣 → ∃!𝑦𝐴(𝑥, 𝑦)) → ∃𝑤∀𝑥(𝑥 ∈ 𝑣 ↔ ∃𝑦(𝑦 ∈ 𝑤 ∧ 𝐴(𝑥, 𝑦)))))

Replacement is needed to ensure that the cumulative hierarchy extends beyond the
finite stages 𝑉0, 𝑉1, 𝑉2, …. From Z1–Z8 (sometimes called Zermelo set theory or Z), we
get the finite stages, but we can’t prove the existence of 𝑉𝜔. With Replacement, we can
show that there is a set {𝑉𝑛 ∶ 𝑛 ∈ ℕ} of all finite stages: the formula 𝐴(𝑥, 𝑦) in Z9 says
that 𝑦 is obtained from ∅ by 𝑥 applications of the power set operation. 𝑉𝜔 is the union
of {𝑉𝑛 ∶ 𝑛 ∈ ℕ}.
Finally, we have Zermelo’s Axiom of Choice. This says that if we have a set 𝑥 of

non-empty sets, then there is a set 𝑦 that contains exactly one element from each set in
𝑥.

Z10 ∀𝑥[∀𝑧(𝑧 ∈ 𝑥 → 𝑧 ≠ ∅) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃!𝑣(𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦))]
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Unlike the other axioms, the Axiom of Choice states that a certain set exists without
describing how it can be constructed: we are not told which element of each set in 𝑥 is
in 𝑦. For this reason (as well as certain strange consequences in the theory of measures),
the axiom has long been controversial. Nowadays, it is generally accepted, as many
important mathematical results depend on it.

Exercise 4.14 The axioms of ZFC guarantee that for any three things a,b,c, there
is a set {a,b,c}. Explain how.

Exercise 4.15 Explain why the separation axiom implies that there is no set of
all sets.

4.3 Sets and numbers

The Axiom of Infinity draws attention to an infinite sequence of sets, called the finite von
Neumann ordinals, or simply the finite ordinals:

• ∅
• {∅}
• {∅, {∅}}
• {∅, {∅}, {∅, {∅}}}
• …

This sequence has the structure of the natural numbers. We can think of ∅ as 0, {∅}
as 1, {∅, {∅}} as 2, and so on. The successor of any number 𝑛 is 𝑛 ∪ {𝑛}. (Note that,
conveniently, each number 𝑛 in this construction has exactly 𝑛 elements.)
More formally, we can use the finite ordinals to define a model of arithmetical theories

like Th(𝔑) and PA. Recall that a model of a theory is a structure consisting of a domain
and an interpretation of the non-logical symbols in which all sentences in the theory are
true. For a model of Th(𝔑), we can choose as the domain the set 𝜔 of finite ordinals.
The interpretation function maps the ‘0’ symbol to ∅ and the successor symbol ‘𝑠’ to
the function that maps each set 𝑥 ∈ 𝜔 to 𝑥 ∪ {𝑥}. The standard recursive definitions of
addition and multiplication then determine the interpretation of ‘+’ and ‘×’. (If 𝑛 and 𝑚
are in 𝜔, 𝑛 + 𝑚 will be the unique set in 𝜔 that has exactly 𝑛 + 𝑚 elements, and 𝑛 × 𝑚
the unique set with 𝑛 × 𝑚 elements.) This shows that the natural number structure can
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be embedded in the structure of sets. The same is true for almost every mathematical
structure.
There is more. Suppose we read

• ‘0’ as an abbreviation of ‘∅’,
• ‘𝑠(𝑡)’ as an abbreviation of ‘𝑡 ∪ {𝑡}’,
• ‘𝑡1 + 𝑡2’ and ‘𝑡1 × 𝑡2’ as abbreviations of the corresponding operations on sets,

andwe restrict all quantifiers in PA to range over𝜔, so that ‘∀𝑥𝐴’ becomes ‘∀𝑥(𝑥 ∈ 𝜔 → 𝐴)’
All axioms of PA are then provable in ZFC. We say that PA is interpretable in ZFC. In
general, a theory 𝑇 is interpretable in ZFC if there is a translation scheme of the kind
I’ve sketched under which all sentences in 𝑇 are provable in ZFC.
A wide range of mathematical theories are interpretable in ZFC. In that sense, ZFC

is at least as strong as these other theories: whatever they can prove, ZFC can prove as
well (if only under the appropriate translation scheme).
I’m not going to prove that PA is interpretable in ZFC. The proof isn’t hard, but a little

fiddly. To get a sense of what needs to be shown, consider the second axiom of PA:

Q2 ∀𝑥 0≠𝑠(𝑥)

Under the above translation scheme, this turns into ∀𝑥(𝑥 ∈ 𝜔 → (∅ ≠ 𝑥 ∪ {𝑥})). And
that’s easily provable in ZFC.

Exercise 4.16 Sketch a proof of the translated Q2 axiom (from the axioms of
ZFC).

Let’s now have a closer look at the finite ordinals. They have some interesting proper-
ties.
For one, every member of a finite ordinal is also a subset of it. Sets of this kind are

called transitive. That’s because a transitive set 𝑧 is a set such that whenever 𝑥 ∈ 𝑦 and
𝑦 ∈ 𝑧 then 𝑥 ∈ 𝑧.
Another special property of the finite ordinals is that they are linearly ordered by ∈:

any two members of 𝑥 are related one way or the other by ∈. I’ll say, for short, that the
finite ordinals are ∈-ordered.
In ZFC, the finite ordinals can be defined as the transitive and ∈-ordered sets with

finitely many elements. Now suppose we drop the finiteness condition. Let’s define an
ordinal as a transitive and ∈-ordered set. The finite ordinals are ordinals, but they are
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not the only ones. For example, 𝜔, the set of finite ordinals, is itself an ordinal. (As you
can confirm, it is transitive and ∈-ordered.) 𝜔 is an infinite ordinal. So is 𝜔 ∪ {𝜔}: the
set we get from 𝜔 by adding 𝜔 itself as an element. Following our earlier definition of
the successor relation, we can see 𝜔 ∪ {𝜔} as the “successor” of 𝜔. The successor of
𝜔 ∪ {𝜔} is 𝜔 ∪ {𝜔} ∪ {𝜔 ∪ {𝜔}}, and so on.
The ordinals form a transfinite sequence. If we identify the finite ordinals with the

natural numbers, the transfinite sequence of ordinals look like this:

0, 1, 2, … , 𝜔, 𝜔+1, 𝜔+2, … 𝜔+𝜔, …

Like 0, 𝜔 is not the successor of any ordinal. Infinite ordinals that are not successors
are called limit ordinals. The next limit ordinal after 𝜔 is 𝜔+𝜔, or 𝜔 ⋅ 2. It is the union
of all ordinals 𝜔+𝑛, where 𝑛 is a finite ordinal. The next limit ordinal after 𝜔 ⋅ 2 is 𝜔 ⋅ 3.
After all the limit ordinals 𝜔 ⋅ 𝑛 and all their successors comes their union 𝜔 ⋅ 𝜔, or 𝜔2

– another limit ordinal. Much later we reach 𝜔𝜔, 𝜔𝜔𝜔 , and so on.
The ordinals extend the idea of “counting” beyond the finite. This has many math-

ematical applications. Above, I’ve used the ordinals to label stages in the cumulative
hierarchy. I used limit ordinals to label stages at which we take the union of the earlier
stages, and successor ordinals to label stages at which we take power sets.

Exercise 4.17 Show that 𝜔 is transitive and ∈-ordered.

Exercise 4.18 Show from the axioms of ZFC that every ordinal has a successor.

Exercise 4.19 Is the set of all ordinals an ordinal?

The ordinals can also be used to interpret the theory of cardinals that I outlined in the
previous chapter. Remember that two sets have the same cardinality iff there is a bijection
between them. For finite sets, cardinalities are naturally identified with natural numbers:
{Athens, Berlin, Cairo} has cardinality 3. But what kind of thing is the cardinality of an
infinite set? In section 3.1, we gave them names: we called them ℵ0, ℵ1, etc. But I didn’t
say more about what these things might be.
The standard answer in contemporary set theory identifies the cardinals with certain

ordinals: the cardinality of any set 𝑥 is defined as the least ordinal that is equinumerous
with 𝑥.
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For finite sets, this yields the expected results. {Athens, Berlin, Cairo} is equinumer-
ous with {∅, {∅}, {∅, {∅}}}, which is the ordinal 3. So the cardinality of { Athens, Berlin,
Cairo } is 3. The cardinality of𝜔 is𝜔. That’s because𝜔 is the least ordinal that is equinu-
merous with 𝜔. Since 𝜔 is countably infinite, and we defined ℵ0 as the cardinality of
any countably infinite set, this means that 𝜔 = ℵ0.
Beyond ℵ0, things get interesting. The cardinality of 𝜔+1 is still ℵ0. Remember that

𝜔+1 is𝜔∪{𝜔}: it is𝜔with one extra element. If you add a single element to a countably
infinite set, you always get another countably infinite set. So 𝜔+1 is equinumerous with
𝜔. Since the cardinality of a set is the least ordinal equinumerous with it, the cardinality
of 𝜔+1 is 𝜔 (a.k.a. ℵ0).
After 𝜔, the ordinal numbers and the cardinal numbers diverge. 𝜔 is both an ordinal

and a cardinal. But 𝜔+1 is only an ordinal. We’ve introduced ‘ℵ1’ to name the next
cardinal after ℵ0. By our current definition, ℵ1 is first ordinal in the transfinite sequence
of ordinals that is not equinumerous with 𝜔. It comes surprisingly late. It’s not 𝜔+1, or
𝜔 ⋅ 2, or 𝜔2, or 𝜔𝜔, or 𝜔𝜔𝜔 . All of these are equinumerous with 𝜔. ℵ1 comes much
later. And yet we know, from Cantor’s theorem, that there are infinitely many different
cardinalities. Indeed, for every ordinal 𝜅, there is a distinct cardinal ℵ𝜅, which is itself
an ordinal!
By Cantor’s theorem, the cardinality of 𝒫(𝜔) is greater than ℵ0. How much greater?

Cantor conjectured, but was unable to prove, that the cardinality of 𝒫(𝜔) is ℵ1. Since
𝒫(𝜔) is equinumerous with the set of real numbers ℝ, which is also known as the con-
tinuum, Cantor’s conjecture was that there is no set whose cardinality is strictly between
that of the natural numbers and that of the real numbers. This became known as the
continuum hypothesis.
In 1938, Gödel proved that the continuum hypothesis is consistent with ZFC (assum-

ing ZFC itself is consistent): it can’t be disproved from the axioms of ZFC. In 1963, Paul
Cohen showed that the negation of the continuum hypothesis is also consistent with ZFC
(assuming ZFC is consistent). So the continuum hypothesis can be neither proved nor
disproved in ZFC.
I find this odd. Take the set of real numbers ℝ. We know that this set is uncountable.

We can get a countable set by removing sufficiently many elements from ℝ. Can we
also remove elements from ℝ so that we get a set that’s still uncountable, but smaller
than ℝ? I would expect this simple question to have a definite answer. But it can’t be
answered from the standard axioms of set theory. We could, of course, add the continuum
hypothesis as a further axiom. But we could equally add its negation. Neither leads to a
contradiction.
Early set theorists assumed that all questions about pure sets have definite answers that
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can be established by an extended kind of logic. The status of the continuum hypothesis
casts doubt on this picture. By now, hundreds of other statements are known that can
neither be proved nor disproved in ZFC. We can investigate structures in which they
hold and structures in which they fail. Perhaps there is no “true” structure of sets after
all. When we describe the cumulative hierarchy, we seem to describe a unique structure.
We say that 𝑉𝜔+2 contains all subsets of 𝑉𝜔+1. But we can’t tell whether these subsets
include sets with a cardinality between ℵ0 and the continuum. If the concept of ‘all
subsets’ has a definite meaning, this meaning seems impossible to pin down.

4.4 Unintended models, again

In section 4.1, we looked at non-standard models of Q: models in which all axioms of Q
are true but whose structure is clearly not that of the natural numbers. I didn’t emphasize
it at the time, but Peano Arithmetic also has non-standard models. These are harder to
construct directly. But we know that they exist, from the compactness theorem.

Theorem 4.1
There are non-standard models of Peano Arithmetic.

Proof. Let 𝑐 be an individual constant other than 0. Let Γ be the set of sentences
consisting of the axioms of PA together with all the sentences

𝑐 ≠ 0, 𝑐 ≠ 𝑠(0), 𝑐 ≠ 𝑠(𝑠(0)), … .

Every finite subset of Γ is true in the standard model of arithmetic: just interpret 𝑐 as
a sufficiently large natural number. By the compactness theorem, Γ has a model. All
axioms of PA are true in this model. But the object denoted by 𝑐 (in this model) can’t
be a natural number: it lies outside the number sequence 0,1,2,3, etc.

Intuitively, PeanoArithmetic doesn’t “know” that there are no numbers besides 0,1,2,3,
etc.: its axioms are compatible with the existence of further numbers. We know from
theorem 3.5 that there’s no way to add the missing information to PA, in the form of
further axioms: even the set of all truths in the language of arithmetic, Th(𝔑), has non-
standard models.

83



4 Theories

Exercise 4.20 PA rules out structures in which the “non-standard numbers” form
either a loop or a second chain 𝑎, 𝑠(𝑎), 𝑠(𝑠(𝑎)), …. What else could a non-standard
model look like?

Are there also non-standard models of ZFC? Let’s first clarify the standard model. A
model of ZFC consists of a set 𝐷 of objects and an interpretation function 𝐼 that assigns
some relation on 𝐷 to the symbol ‘∈’. In the intended model, 𝐷 is the set of all sets, and
𝐼 maps ‘∈’ to … Wait. There is no set of all sets!
In a sense, every model of ZFC is a non-standard model. For every model has a set as

its domain, but there is no set of all sets. The real sets form a proper class.
The problem is that we’ve formalized our semantic concepts in set-theoretic terms.

We’ve definemodels as set-theoretic structures. The intended interpretation of ZFC can’t
be formalized in this way.
You may wonder how ZFC can have models in our set-theoretic sense at all. In any

set-theoretic model of ZFC, the domain is a set, but ZFC entails that there is no set of all
sets. We can strengthen this puzzle. Let’s take for granted that ZFC is consistent. By the
completeness theorem, it follows that ZFC has a model. By the (downward) Löwenheim-
Skolem theorem, it follows from this that ZFC has a countablemodel. Call that model𝔐.
The domain of 𝔐 contains only countably many objects. Yet all sentences in ZFC are
true in 𝔐, including sentences saying that there are uncountably many things in 𝒫(𝜔),
even more in 𝒫(𝒫(𝜔)), and so on. This is known as “Skolem’s Paradox”.
It’s not a real paradox. A set 𝑥 is countable if there is an injective function from 𝑥 to

𝜔; 𝑥 is uncountable if there is no such function. ZFC proves that 𝒫(𝜔) is uncountable
by proving that there is no injective function from 𝒫(𝜔) to 𝜔. Remember that functions
are represented as sets of ordered pairs. To say that there is an injective function from 𝑥
to 𝜔 is to say that there is a set 𝑓 of pairs ⟨𝑦, 𝑛⟩ such that for each 𝑦 ∈ 𝑥 there is exactly
one 𝑛 ∈ 𝜔 for which ⟨𝑦, 𝑛⟩ ∈ 𝑓 , and for each 𝑛 ∈ 𝜔 there is at most one 𝑦 ∈ 𝑥 for
which ⟨𝑦, 𝑛⟩ ∈ 𝑓 . ZFC proves that there is no such set 𝑓 for 𝑥 = 𝒫(𝜔). In the countable
model 𝔐, there may, in fact, be a bijection between the objects denoted by 𝜔 and 𝒫(𝜔).
That is, we may be able to construct such a bijection. But it need not be an object in the
domain of 𝔐. If it is not, the statement that there is no bijection of the given type is true
in 𝔐.
There is still a puzzle, however. It is related to the puzzle from the end of the previous

section. How do we manage to latch onto the set-theoretic universe? We could program
an AI to interpret the language of ZFC in a countable model. The AI would say that
there are uncountably many sets. It would say all the right things. But its conception of
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sets would seem to be radically different from ours. For we can see that there are, in fact,
only countably many of the things it calls ‘sets’. Given that this is possible, how can we
be sure that we are not equally mistaken about the true sets? How do we know that there
isn’t an outside perspective from which one can see that there only countably many of
the things we call ‘sets’?
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