Logic, Computability and Incompleteness

First-order Logic

Wolfgang Schwarz

3 October 2025

Symbols:

- ullet the connectives \neg and o
- the punctuation symbols '(', ')', and ','
- the identity symbol =
- the quantifier symbol \forall
- variables *x*, *y*, *z*, . . .
- individual constants a, b, c, . . .
- function symbols f, g, h, \ldots
- relation symbols F, G, H, . . .

Terms:

- every variable and individual constant is a term.
- if t_1, \ldots, t_n are terms and f is an n-ary function symbol, then $f(t_1, \ldots, t_n)$ is a term.

Atomic formulas:

- if t_1 and t_2 are terms, then $t_1 = t_2$ is an atomic formula.
- if t_1, \ldots, t_n are terms and R is an n-ary relation symbol, then $Rt_1 \ldots t_n$ is an atomic formula.

Formulas:

- Every atomic formula is a formula.
- If A and B are formulas, then $\neg A$ and $(A \rightarrow B)$ are formulas.
- If A is a formula and x is a variable, then $\forall x A$ is a formula.

Free and bound variables

- An occurrence of a variable x in a formula A is bound if it is inside a subformula of A of the form ∀xB.
- An occurrence of a variable x in a formula A is <u>free</u> if it is not bound.
- A formula is a sentence if it contains no free variables.

The first-order calculus

$$\begin{array}{lll} \text{A1} & \text{A} \rightarrow (B \rightarrow \text{A}) \\ \text{A2} & (\text{A} \rightarrow (B \rightarrow \text{C})) \rightarrow ((\text{A} \rightarrow \text{B}) \rightarrow (\text{A} \rightarrow \text{C})) \\ \text{A3} & (\neg \text{A} \rightarrow \neg \text{B}) \rightarrow (\text{B} \rightarrow \text{A}) \\ \text{A4} & \forall x \text{A} \rightarrow \text{A}(x/c) \\ \text{A5} & \forall x (\text{A} \rightarrow \text{B}) \rightarrow (\text{A} \rightarrow \forall x \text{B}), \text{ if x is not free in A} \\ \text{A6} & t = t \\ \text{A7} & t_1 = t_2 \rightarrow (\text{A}(x/t_1) \rightarrow \text{A}(x/t_2)) \\ \text{MP} & \textit{From A and A} \rightarrow \text{B one may infer B}. \\ \text{Gen} & \textit{From A one may infer } \forall x \text{A}(c/x). \end{array}$$

The first-order calculus

```
Id A \vdash A.
```

Mon If $\Gamma \vdash A$ then $\Gamma, B \vdash A$. Cut If $\Gamma \vdash A$ and $\Delta, A \vdash B$ then $\Gamma, \Delta \vdash B$.

Taut \vdash A whenever A is a truth-functional tautology.

MP If $\Gamma \vdash A$ and $\Gamma \vdash A \rightarrow B$ then $\Gamma \vdash B$.

DT If $\Gamma, A \vdash B$ then $\Gamma \vdash A \rightarrow B$.

Gen If $\Gamma \vdash A$ then $\Gamma \vdash \forall xA(c/x)$.

UI If $\Gamma \vdash \forall x A \text{ then } \Gamma \vdash A(x/c)$.

Models

Informally, a model describes a scenario together with an interpretation of the non-logical vocabulary.

- D is the intended domain of discourse.
- I maps each constant to an element of D, each function symbol to a function on D, and each non-logical predicate to a set of tuples from D.

Satisfaction

 $\mathfrak{M} \models A$: A is true in \mathfrak{M} .

Defined recursively.

An example of a model \mathfrak{M} :

- Domain $D = \{0, 1\}$.
- I(a) = 0, I(b) = 1.
- I(f) is the function with f(0) = 1, f(1) = 1.
- $I(F) = \{1\}.$
- $I(R) = \{\langle 0, 1 \rangle\}.$

Check:

- (a) $\mathfrak{M} \models a = b$?
- (b) $\mathfrak{M} \models f(a) = b$?
- (c) $\mathfrak{M} \models \forall xFx$?
- (d) $\mathfrak{M} \models \forall x F f(x)$?
- (e) $\mathfrak{M} \models \exists x R(x, f(x))$?
- (f) $\mathfrak{M} \models \exists x (x = f(x) \rightarrow Fx)$?

Soundness

Soundness

If \vdash A, then \models A.

Proof:

- All axioms are valid.
- MP and Gen preserve validity.
- So: Anything that is provable is valid.

Corollary: If $\Gamma \vdash A$, then $\Gamma \models A$.

Syntax

- Second-order variables X, Y, Z,
- If t_1, \ldots, t_n are terms and X is an n-ary second-order variable, then $Xt_1 \ldots t_n$ is an atomic formula.
- If A is a formula and X is a second-order variable, then ∀XA is a formula.

Semantics

• $\forall XA$ is true in \mathfrak{M} if A(X/P) is true in every model \mathfrak{M}' that differs from \mathfrak{M} at most in what it assigns to P.

In effect, the second-order variables range over all subsets of the domain.

Semantics

• $\forall XA$ is true in \mathfrak{M} if A(X/P) is true in every model \mathfrak{M}' that differs from \mathfrak{M} at most in what it assigns to P.

We can define '=':

$$\mathfrak{M} \vDash \mathsf{s} = \mathsf{t} \text{ iff } \mathfrak{M} \vDash \forall \mathsf{X} (\mathsf{X}\mathsf{s} \leftrightarrow \mathsf{X}\mathsf{t}).$$

Second-Order Axioms

```
\begin{array}{lll} A4 & \forall xA \rightarrow A(x/c) \\ A4^2 & \forall XA \rightarrow A(X/P) \\ A5 & \forall x(A \rightarrow B) \rightarrow (A \rightarrow \forall xB), \ if \ x \ is \ not \ free \ in \ A \\ A5^2 & \forall X(A \rightarrow B) \rightarrow (A \rightarrow \forall XB), \ if \ X \ is \ not \ free \ in \ A \\ Gen & From \ A \ one \ may \ infer \ \forall xA(c/x). \\ Gen^2 & From \ A \ one \ may \ infer \ \forall XA(P/X). \\ Comp & \exists X\forall y(Xy \leftrightarrow A(y)). \end{array}
```

This calculus is sound. It is not complete.