Logic 2: Modal Logic

Lecture 10

Wolfgang Schwarz

University of Edinburgh

The Logic of Knowledge

Possible-worlds analysis of knowledge

S knows that P iff P is true at all worlds compatible with S's knowledge.

Possible-worlds analysis of knowledge

KA is true at w iff A is true at all worlds accessible from w.

The logic of knowledge depends on the properties of the accessibility relation.

Is the accessibility relation for knowledge reflexive?

Equivalently, is the (T)-schema valid in the logic of knowledge?

(T) $KA \rightarrow A$

Plausibly, yes.

We then automatically get

 $(\mathbf{D}) \mathsf{K} A \rightarrow \mathsf{M} A$

Should *R* be symmetric? Do we want (B) to come out valid?

(B) $A \rightarrow KMA$

Suppose you falsely believe $\neg p$.

- *p* is true.
- You believe that you know $\neg p$.
- You don't believe that you don't know $\neg p$.
- You don't know that you don't know $\neg p$.
- $K \neg K \neg p$ is false.
- KM p is false.

Also, this would lead to skepticism.

Positive Introspection:

(4) $KA \rightarrow KKA$

Negative Introspection:

(5) $MA \rightarrow KMA$

(5) corresponds to euclidity. Euclidity and reflexivity entail symmetry. So philosophers mostly reject (5).

(4) corresponds to transitivity. It is controversial.

Multi-Modal Logic

If we want to talk about several agents, we need a multi-modal logic.

Definition
A multi-modal Kripke model consists of
• a non-empty set <i>W</i> ,
• a set of binary relation R_1, R_2, \ldots, R_n on W , and
• a function V that assigns to each sentence letter of \mathfrak{L}_M a subset of W.

In epistemic logic, v is R_i -accessible from w iff v is compatible with the information agent i has at world w.

The **language of multi-modal propositional logic** has several boxes $\Box_1, \Box_2, \ldots, \Box_n$ and diamonds $\Diamond_1, \Diamond_2, \ldots \Diamond_n$.

 $M, w \models \Box_i A \quad \text{iff } M, v \models A \text{ for all } v \text{ such that } wR_i v.$ $M, w \models \Diamond_i A \quad \text{iff } M, v \models A \text{ for some } v \text{ such that } wR_i v.$ As before, we write the boxes as $\ensuremath{\ensuremath{\mathsf{K}}}$ and the diamonds as $\ensuremath{\mathsf{M}}$.

- M₁ p
- K₁ p
- K₁M₂ p
- $K_1 p \rightarrow M_2 p$
- $K_1 p \rightarrow K_2 K_1 p$

Interaction principles

In multi-modal logics, we can impose constraints on individual accessibility relations:

- *R*¹ is reflexive
- R₂ is transitive
- etc.

but also on how different relations interact:

- if wR_1v then wR_2v
- if wR_1v then vR_2w
- if wR_1v and vR_2u then wR_3u
- etc.

Constraints on the interaction between accessibility relations correspond to interaction schemas that link different operators.

 $\Diamond_1 A \to \Diamond_2 A$ $\Diamond_1 A \to \Box_2 \Diamond_1 A$

etc.

An interaction principle for multi-agent knowledge:

 $\mathrm{K}_1\mathrm{K}_2\mathrm{A} \longrightarrow \mathrm{K}_1\mathrm{A}$

But this follows from the (T)-schema for K₂:

- 1. $K_2 A \rightarrow A$ (T)
- 2. $K_1(K_2 A \rightarrow A)$ (1, Nec)
- 3. $K_1(K_2 A \rightarrow A) \rightarrow (K_1 K_2 A \rightarrow K_1)$ (K)
- 4. $K_1 K_2 A \rightarrow K_1 A$ (2, 3, MP)

Knowledge and Belief

A belief state represents the world as being a certain way.

We can ask, for every possible world, whether it matches what an agent believes.

Is the doxastic accessibility relation

- reflexive $(\Box A \rightarrow A)$?
- serial $(\Box A \rightarrow \Diamond A)$?
- symmetric $(A \rightarrow \Box \Diamond A)$?
- transitive $(\Box A \rightarrow \Box \Box A)$?
- euclidean ($\Diamond A \rightarrow \Diamond \Box A$)?

If we accept seriality, transitivity, and euclidity, we get the logic KD45.

 $M, w \models KA \text{ iff } M, v \models A \text{ for all } v \text{ such that } wR_K v$ $M, w \models BA \text{ iff } M, v \models A \text{ for all } v \text{ such that } wR_B v$

A plausible interaction principle: $KA \rightarrow BA$

What does this mean for R_B and R_K ?

 $KA \to BA$ $\Diamond_B A \to \Diamond_K A$

Whenever wR_Bv then wR_Kv .

Candidate Interaction Principles for B and K:

(KB)
$$KA \rightarrow BA$$

(PI) $BA \rightarrow KBA$
(NI) $\neg BA \rightarrow K \neg BA$
(SB) $BA \rightarrow BKA$

These entail

(B4)
$$BA \rightarrow BBA$$

(B5) $\neg BA \rightarrow B \neg BA$
(KG) $MKA \rightarrow KMA$

Knowledge and Possibility

Let A mean that A is possible, in some circumstantial sense.

M, $w \models KA$ iff *M*, $v \models A$ for all v such that wR_Kv *M*, $w \models \Diamond A$ iff *M*, $v \models A$ for some v such that wR_Cv

The verificationist principle of knowability: $A \rightarrow \Diamond KA$

- 1. Let *p* be any unknown truth. So $p \land \neg Kp$.
- 2. By the knowability principle, $\langle K(p \land \neg Kp) \rangle$.
- 3. $K(p \land \neg Kp)$ entails $Kp \land K \neg Kp$.
- 4. $K \neg Kp$ entails $\neg Kp$.
- 5. So Kp and \neg Kp.