Logic 2: Modal Logic

Lecture 7

Wolfgang Schwarz

University of Edinburgh

Recap

We have introduced a formal language (\mathfrak{L}_M) to reason about possibility, necessity, knowledge, belief, norms, time, and other non-truth-functional matters.

For each application, we need to clarify which \mathfrak{L}_M -sentences are valid, or entailed by which others.

- $\Box p \models p$?
- $\Box p \models \Diamond p$?
- $\Box p \models \Box \Box p$?
- $p \models \Box \Diamond p$?
- $\Diamond \Box p \models \Box \Diamond p$?

Many non-truth-functional operators can be analysed as (restricted) quantifiers over worlds or times.

It is historically necessary that $p \Leftrightarrow p$ is true at every possible world that we can bring about.

I know that $p \Leftrightarrow p$ is true at every possible world that is compatible with my evidence.

It is required that $p \Leftrightarrow p$ is true at every possible world in which the requirements are met.

It is always going to be the case that $p \Leftrightarrow p$ is true at every time after the present.

Many non-truth-functional operators can be analysed as (restricted) quantifiers over worlds or times.

 $\Box p$ is true at $w \Leftrightarrow p$ is true at every world/time that is accessible from w.

We can define a logic by specifying formal properties of the accessibility relation.

If every world is accessible from itself then $\Box p \models p$. If $\Box p \models p$ then every world is accessible from itself.

Schema	Condition On R
$ \begin{array}{ccc} (T) & \Box A \rightarrow A \\ (D) & \Box A \rightarrow \Diamond A \\ (B) & A \rightarrow \Box \Diamond A \\ (4) & \Box A \rightarrow \Box \Box A \\ (5) & \Diamond A \rightarrow \Box \Diamond A \\ (G) & \Diamond \Box A \rightarrow \Box \Diamond A \end{array} $	R is reflexive: every world in W is accessible from itself R is serial: every world in W can access some world in W R is symmetric: whenever wRv then vRw R is transitive: whenever wRv and vRu, then wRu R is euclidean: whenever wRv and wRu, then vRu R is convergent: whenever wRv and wRu, then there is some t such that vRt and uRt

Some aspects of the logic are the same no matter what we say about accessibility.

- $\Box A, \Box (A \rightarrow B) \models \Box B$
- $\Box(A \land B) \models \Box B$
- $\Diamond (A \lor B) \models \Diamond A \lor \Diamond B$
- $A \land B \models A$

Once we have specified a class of Kripke models (or frames), we have specified a logic.

But we haven't yet specified a method of proof for the logic.

What is a proof of a sentence A?

- "A proof is list of sentences each of which is either an axiom or can be deduced from earlier sentences by one of the rules. A proof of A is such a list that ends with A."
- "A proof is a configuration of nodes consisting of either an \mathfrak{L}_M -sentence with a world label or a sentence of the form $\omega R \nu$ – that conforms to the tree construction rules. A proof of A is such a configuration with starting node $\neg A(w)$ and in which all terminal nodes are marked as closed."

• ...

1	SHØW	$: 1 : \Box \varphi$	$\rightarrow \Box \psi$		[3, LCOND]
2	[$1:\Box\varphi$		ass.	
3		$SHOW: 1: \Box \psi$			[k+1, LRED]
4		$1: \neg \Box \psi$		ass.	
5			SHØW	$1.1: arphi \wedge eg \psi$	$[i + 1, LE_2]$
6				$1.1: \neg \varphi \land \psi$	ass.
7				$1.1: \neg \varphi$	$(6, L\alpha E)$
8				$1.1:\psi$	$(6, L\alpha E)$
9				SHØW: $1.1 : \varphi \leftrightarrow \psi$	
				$\mathcal{D}[\sigma/1.\sigma]$	
i				$1.1:\varphi$	(8, 9)
i + 1				\perp	$(7, i, L \perp I)$
i + 2			$1.1:\varphi$		$(5, L\alpha E)$
i + 3			$1.1 : \neg v$	ψ	$(5, L\alpha E)$
i + 4			SHØW	$1:1:\varphi\leftrightarrow\psi$	
				$\mathcal{D}[\sigma/1.\sigma]$	
$_{k}$			$1.1:\psi$		(i+2, i+4)
k + 1			\perp		$(i+3,k,L{\perp}I)$

1	$p \to q$	ass.
2	$\boxed{\qquad} q \to r$	ass.
3		ass.
4	$p \to q$	1, (rep.)
5	q	$3, 4, (\rightarrow E)$
6	$q \rightarrow r$	$2,(\mathrm{rep.})$
7	r	5, 6, $(\rightarrow E)$
8	$p \rightarrow r$	3–7 $(\rightarrow I)$
9	$(q \to r) \to (p \to r)$	2–8, $(\rightarrow I)$
10	$(p \to q) \to ((q \to r) \to (p \to r))$	1–9, $(\rightarrow I)$

A proof is a finite syntactic object conforming to strict and mechanically testable rules.

Whatever method we use, we want it to have the following properties:

- Soundness: If a sentence is provable, then it is valid.
- **Completeness**: If a sentence is valid, then it is provable.

Soundness of K-trees

We have many concepts of validity, and different trees rules for each.

K-valid	K-rules
T-valid	K-rules + Reflexivity
D-valid	K-rules + Seriality
K4-valid	K-rules + Transitivity
S4-valid	K-rules + Reflexivity + Transitivity
S4.2-valid	K-rules + Reflexivity + Transitivity + Convergence
S5-valid	S5-rules

•••

Let's show that the K-rules are sound for K-validity:

If a K-tree for a target sentence closes, then that sentence is K-valid.

How could we show this?

Let's try a conditional proof:

- We assume there is a closed K-tree for some sentence A.
- We want to infer that A is K-valid.

- We assume there is a closed K-tree for some sentence A.
- We want to infer that A is K-valid. We want to infer that A is true at all worlds in all Kripke models.

- We assume there is a closed K-tree for some sentence A.
- We suppose that A is false at some world w in some Kripke model M.
- We want to derive a contradiction.

1. $\neg A$ (w)

The first node on the tree is a correct statement about *M*.

- We assume there is a closed K-tree for some sentence A.
- We suppose that A is false at some world w in some Kripke model M.
- We want to derive a contradiction.

1. $\neg (B \to C) (w)$ 2. B (w) (1)3. $\neg C (w) (1)$

After the first node is expanded, the new nodes are also correct statement about *M*.

- We assume there is a closed K-tree for some sentence A.
- We suppose that A is false at some world w in some Kripke model M.
- We want to derive a contradiction.

After node i is expanded, the new node on at least one branch is also correct statement about *M*.

- We assume there is a closed K-tree for some sentence A.
- We suppose that A is false at some world w in some Kripke model M.
- We want to derive a contradiction.

i. $\Diamond A$ (w) j. wRv (1) k. A (v) (1)

After node *i* is expanded with the help of node *j*, the new node *k* is also a correct statement about *M* (on some way of assigning the worlds in *M* the labels '*w*' and '*v*').

- We assume there is a closed K-tree for some sentence A.
- We suppose that A is false at some world w in some Kripke model M.
- We want to derive a contradiction.

In general, we can show this:

If all nodes on some branch of a tree are correct statements about M, and the branch is extended by the K-rules, then all nodes on at least one of the resulting branches are still correct statements about M.

It follows that all nodes on some branch of the tree for A are correct statements about *M*.

- We assume there is a closed K-tree for some sentence A.
- We suppose that A is false at some world w in some Kripke model M.
- We want to derive a contradiction.
- The first node on the tree is a correct statement about *M*.
- Whenever a node on the tree is expanded, all nodes on at least one branch are all correct statements about *M*.
- But the tree is closed: every branch on the tree contains a contradictory pair

n. B
$$(\upsilon)$$

m. $\neg B (\upsilon)$

These two nodes can't both be correct statements about M.

Completeness of K-trees

We have shown

Soundness

If a K-tree for a target sentence closes, then that sentence is K-valid.

Now we want to show

Completeness

If a sentence is K-valid, then there is a closed K-tree for the sentence.

Completeness

If a sentence is K-valid, then there is a closed K-tree for the sentence.

We will prove something even stronger:

• If a sentence is K-valid, then any fully expanded K-tree for the sentence is closed.

Equivalently:

• If a fully expanded K-tree does not close, then the target sentence is not K-valid.

If a fully expanded K-tree does not close, then the target sentence is not K-valid.

- We assume that a fully expanded K-tree for a target sentence A has an open branch.
- We want to infer that A is false at some world in some model.

We already know how to construct such a model: we can read it off from any open branch!

All we need to show is that our method for reading off a model from open branches always provides a countermodel for the target sentence. Suppose there is an open branch on a fully expanded tree.

Let *M* be the model we read off from that branch.

We show that every node on the branch is a correct statement about M.

- The claim is obvious for sentence letters and negated sentence letters.
- Suppose $p \land q(w)$ is on the branch.
- Then p(w) and q(w) are on the branch.
- So p is true at w and q at w in M.
- So $p \land q$ is true at w in M.
- And so on.

Completeness

If a sentence is K-valid, then there is a closed K-tree for the sentence.

- We show that if there is a fully expanded but open K-tree for a sentence, then that sentence is not valid.
- We do this by showing that the model we can read off from an open branch on a fully expanded K-tree is always a countermodel for the target sentence.