
10 Semantics for Modal Predicate
Logic

10.1 Constant domain semantics

We have met the language 𝔏𝑀𝑃 of (first-order) modal predicate logic. It is time to
think about how this language should be interpreted. This will tell us which sen-
tences and inferences in the language are valid.

As in modal propositional logic, we will assume that the box and the diamond
are quantifiers over accessible worlds, where “accessibility” is a placeholder whose
meaning depends on the application. If we want to reason about knowledge, a world
𝑣 might be accessible from a world 𝑤 iff 𝑣 is compatible with what is known at 𝑤. If
we’re interested in metaphysical modality then a world 𝑣 might be accessible from
a world 𝑤 iff it is compatible with the nature of things at 𝑤. Here we might, for
example, read ♢𝐹𝑎 as saying that Aristotle could have been a sailor, assuming that
𝑎 picks out Aristotle and 𝐹 the property of being a sailor.

Our topic in logic is not whether a particular claim about Aristotle is true. We want
to know which statements are logically true or valid, meaning that they are true in
any conceivable scenario, under any interpretation of the non-logical expressions
(but holding fixed the meaning of the modal operators).

As always, we use models to represent a scenario together with an interpretation
of the non-logical vocabulary. A model for 𝔏𝑀𝑃 contains just enough information
about a scenario and an interpretation to determine, for every 𝔏𝑀𝑃-sentence and
every world, whether the sentence is true at that world.

The non-logical vocabulary of 𝔏𝑀𝑃 are the names and the predicates (with the
exception of the identity predicate ‘=’). Let’s assume, for now, that the purpose of a
name is simply to pick out an individual. Intuitively, a predicate picks out a property
or relation. In non-modal predicate logic, we could represent these properties or
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10 Semantics for Modal Predicate Logic

relations by their extension – by the sets of individuals (or tuples of individuals) to
which they apply. In modal predicate logic, however, we typically want to allow for
scenarios in which an individual has different properties at different worlds. In one
world, Aristotle might be a sailor, in another he might be a shoemaker. If 𝐹 expresses
the property of being a sailor, then the set of individuals to whom 𝐹 applies will differ
from world to world. To determine the truth-value of 𝐹𝑎 at a world, we need to know
to which individuals 𝐹 applies at that world. A model’s interpretation function will
therefore assign a set of (tuples of) individuals to each predicate relative to each
world.

Consider a model with two worlds 𝑤 and 𝑣. Both worlds, let’s assume, are acces-
sible from 𝑤 and neither is accessible from 𝑣. The model’s interpretation function
tells us that the name 𝑎 picks out, say, Aristotle. It also tells us that the predicate 𝐹
applies to Aristotle and Boethius at 𝑤 and only to Boethius at 𝑣. We can write this
as follows:

𝑉(𝑎) = Aristotle
𝑉(𝐹, 𝑤) = {Aristotle, Boethius}
𝑉(𝐹, 𝑣) = {Boethius}

We don’t know what property is expressed by 𝐹, nor which properties Aristotle and
Boethius have at 𝑤 and 𝑣. Nonetheless, we can figure out that 𝐹𝑎 is true at 𝑤, because
the predicate 𝐹 applies to Aristotle at 𝑤. We can also figure out that 𝐹𝑎 is false at 𝑣,
and that □𝐹𝑎 is false at 𝑤.

To determine the truth-value of arbitrary 𝔏𝑀𝑃-sentences, we need some more in-
formation. As it stands, we can’t tell whether (say) ∀𝑥𝐹𝑥 is true at 𝑤. Informally,
∀𝑥𝐹𝑥 says that every individual is 𝐹. We know that Aristotle and Boethius are 𝐹 at
𝑤. But we don’t know if there are other individuals besides Aristotle and Boethius.
If yes, then ∀𝑥𝐹𝑥 is false at 𝑤. If no, the sentence is true. We therefore assume that
a model for 𝔏𝑀𝑃 also specifies a domain of individuals.

Definition 10.1
A constant-domain Kripke model for 𝔏𝑀𝑃 is a structure 𝑀 consisting of

1. a non-empty set 𝑊 (the “worlds”),
2. a binary (“accessibility”) relation 𝑅 on 𝑊 ,
3. a non-empty set 𝐷 (of “individuals”), and
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4. an interpretation function 𝑉 that assigns
• to each 𝔏𝑀𝑃-name a member of 𝐷, and
• to each 𝑛-place predicate of 𝔏𝑀𝑃 and world 𝑤 ∈ 𝑊 a set of 𝑛-tuples

from 𝐷.

Models of this type are called “constant-domain models” because the domain of
individuals is the same for each world. This may seem questionable – and we are
soon going to question it – but it simplifies the semantics. Let’s stick with it for the
moment.

Having defined a concept of a model, we can lay down the rules that determine
whether any given 𝔏𝑀𝑃-sentence is true at a world in a model.

In fact, truth will be defined relative to three parameters: a model, a world, and an
assignment function. The assignment function plays the same role as in non-modal
predicate logic. ∀𝑥♢𝐹𝑥, for example, is true at a world 𝑤 in a model iff there is
some assignment of an individual to 𝑥 that renders ♢𝐹𝑥 true at 𝑤. We continue to
use [𝜏]𝑀,𝑔 for the individual picked out by a term (name or variable) 𝜏 relative to a
model 𝑀 = ⟨𝐷, 𝑊, 𝑅, 𝑉 ⟩ and an assignment function 𝑔:

[𝜏]𝑀,𝑔 =def

⎧{
⎨{⎩

𝑉(𝜏) if 𝜏 is a name
𝑔(𝜏) if 𝜏 is a variable.

Definition 10.2: Constant-domain Kripke semantics
If 𝑀 = ⟨𝑊, 𝑅, 𝐷, 𝑉 ⟩ is a constant-domain Kripke model, 𝑤 is a member of 𝑊 ,
𝜙 is an 𝑛-place predicate (for 𝑛 ≥ 0), 𝜏1, 𝜏2, … , 𝜏𝑛 are terms, 𝜒 is a variable,
and 𝑔 is a variable assignment, then
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10 Semantics for Modal Predicate Logic

(a) 𝑀, 𝑤, 𝑔 |= 𝜙𝜏1 … 𝜏𝑛 iff ⟨[𝜏1]𝑀,𝑔, … , [𝜏𝑛]𝑀,𝑔 ⟩ ∈ 𝑉(𝜙, 𝑤).
(b) 𝑀, 𝑤, 𝑔 |= 𝜏1 = 𝜏2 iff [𝜏1]𝑀,𝑔 = [𝜏2]𝑀,𝑔.
(c) 𝑀, 𝑤, 𝑔 |= ¬𝐴 iff 𝑀, 𝑤, 𝑔 |≠ 𝐴.
(d) 𝑀, 𝑤, 𝑔 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑤, 𝑔 |= 𝐴 and 𝑀, 𝑤, 𝑔 |= 𝐵.
(e) 𝑀, 𝑤, 𝑔 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑤, 𝑔 |= 𝐴 or 𝑀, 𝑤, 𝑔 |= 𝐵.
(f) 𝑀, 𝑤, 𝑔 |= 𝐴 → 𝐵 iff 𝑀, 𝑤, 𝑔 |≠ 𝐴 or 𝑀, 𝑤, 𝑔 |= 𝐵.
(g) 𝑀, 𝑤, 𝑔 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑤, 𝑔 |= (𝐴 → 𝐵) and 𝑀, 𝑤, 𝑔 |= (𝐵 → 𝐴).
(h) 𝑀, 𝑤, 𝑔 |= ∀𝜒𝐴 iff 𝑀, 𝑤, 𝑔′ |= 𝐴 for all 𝜒-variants 𝑔′ of 𝑔.
(i) 𝑀, 𝑤, 𝑔 |= ∃𝜒𝐴 iff 𝑀, 𝑤, 𝑔′ |= 𝐴 for some 𝜒-variant 𝑔′ of 𝑔.
(j) 𝑀, 𝑤, 𝑔 |= □𝐴 iff 𝑀, 𝑣, 𝑔 |= 𝐴 for all 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣.
(k) 𝑀, 𝑤, 𝑔 |= ♢𝐴 iff 𝑀, 𝑣, 𝑔 |= 𝐴 for some 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣.
𝐴 is true at 𝑤 in 𝑀 iff 𝑀, 𝑤, 𝑔 |= 𝐴 for every assignment function 𝑔 for 𝑀.

Let’s return to the model from above, and let’s add the information that the domain
of individuals consists of just Aristotle and Boethius. That is, let 𝑀 be the following
model:

𝑊 = {𝑤, 𝑣}
𝑅 = {⟨𝑤, 𝑤⟩, ⟨𝑤, 𝑣⟩}
𝐷 = {Aristotle, Boethius}
𝑉(𝑎) = Aristotle
𝑉(𝐹, 𝑤) = {Aristotle, Boethius}
𝑉(𝐹, 𝑣) = {Boethius}

This isn’t a complete specification of a model because I haven’t assigned a meaning
to names and predicates other than 𝑎 and 𝐹, but we have enough information to
determine the truth-value of any 𝔏𝑀𝑃-sentence whose only non-logical vocabulary
are 𝑎 and 𝐹.

We can, for example, verify that 𝐹𝑎 is true at 𝑤 in 𝑀. A sentence is true at 𝑤
in 𝑀 iff it is true at 𝑤 in 𝑀 relative to every assignment function 𝑔. By clause
(a) of definition 10.2, 𝐹𝑎 is true at 𝑤 in 𝑀 relative to 𝑔 iff [𝑎]𝑀,𝑔 is a member of
𝑉(𝐹, 𝑤). Since 𝑎 is a name, [𝑎]𝑀,𝑔 is 𝑉(𝑎). And 𝑉(𝑎) is Aristotle. So 𝐹𝑎 is true
at 𝑤 relative to 𝑔 iff Aristotle is a member of 𝑉(𝐹, 𝑤). We know that 𝑉(𝐹, 𝑤) is
{Aristotle, Boethius}. Aristotle evidently is a member of {Aristotle, Boethius}. So
𝐹𝑎 is true at 𝑤 in 𝑀, relative to any assignment 𝑔.
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We can also verify that □𝐹𝑎 is false at 𝑤. By clause (j) of definition 10.2, □𝐹𝑎 is
true at 𝑤 (in 𝑀 relative to 𝑔) iff 𝐹𝑎 is true (in 𝑀 relative to 𝑔) at all worlds accessible
from 𝑤. And 𝐹𝑎 is false at 𝑣 because Aristotle is not a member of {Boethius}.

Exercise 10.1
Which of the following sentences are true at 𝑤 in 𝑀?
(a) ¬𝐹𝑎 → 𝐹𝑎
(b) □∃𝑥𝐹𝑥
(c) □∀𝑥𝐹𝑥
(d) ∃𝑥□𝐹𝑥
(e) ∀𝑥□𝐹𝑥
(f) ∀𝑥(□𝐹𝑥 →□□𝐹𝑥)

Validity is truth at all worlds in all models of a certain kind. A sentence is CK-
valid iff it is true at all worlds in all constant-domain Kripke models. ‘C’ comes from
‘constant domains’; ‘K’ indicates that we have put no constraints on the accessibility
relation. We get stronger concepts of validity – stronger logics – if we require the
accessibility relation to be reflexive, or transitive, or euclidean, etc.

It is not hard to see that every sentence that is valid in classical predicate logic is
CK-valid. Similarly, every K-valid sentence is CK-valid. We also get some new in-
teraction principles between modal operators and quantifiers. For example, consider
the following schema, known as the Barcan Formula, after Ruth Barcan Marcus.

(BF) ∀𝑥□𝐴 →□∀𝑥𝐴

Observation 10.1: All instances of (BF) are CK-valid.

Proof. Suppose a sentence ∀𝑥□𝐴 is true at some world 𝑤 in some constant-domain
model 𝑀 relative to some assignment 𝑔. By clause (h) of definition 10.2, it follows
that □𝐴 is true at 𝑤 relative to every 𝑥-variant 𝑔′ of 𝑔. By clause (j) of definition
10.2, it follows that 𝐴 is true at every world 𝑣 accessibility from 𝑤 relative to every
𝑥-variant 𝑔′ of 𝑔. By clause (h), this means that ∀𝑥𝐴 is true relative to 𝑔 at every
world 𝑣 accessible from 𝑤. So by clause (j), □∀𝑥𝐴 is true at 𝑤 relative to 𝑔.

We’ve shown that whenever ∀𝑥□𝐴 is true at some world 𝑤 in some model 𝑀
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relative some assignment 𝑔, then □𝐴∀𝑥𝐴 is also true at 𝑤 in 𝑀 relative to 𝑔. By
clause (f) of definition 10.2, it follows that ∀𝑥□𝐴 →□𝐴∀𝑥𝐴 is true at every world
in every model relative to every assignment.

Instead of working through definition 10.2, we can use trees to test if a sentence
is CK-valid. The tree rules for CK are all the rules for K (from chapter 3) together
with all the rules for standard predicate logic, with an added world parameter on
each node that is held fixed when applying a rule from standard predicate logic. (In
the predicate logic rules, a name counts as ‘old’ if it already occurs on the relevant
branch, no matter at which world.)

To get a complete proof system, we need one further identity rule, reflecting the
fact that the reference of a name does not vary from world to world:

Identity Invariance

𝜂1 = 𝜂2 (𝜔)

𝜂1 = 𝜂2 (𝜈)
↑

old

Here is a tree proof for a simple instance of the Barcan Formula, ∀𝑥□𝐹𝑥 →□∀𝑥𝐹𝑥.

1. ¬(∀𝑥□𝐹𝑥 →□∀𝑥𝐹𝑥) (𝑤) (Ass.)
2. ∀𝑥□𝐹𝑥 (𝑤) (1)
3. ¬□∀𝑥𝐹𝑥 (𝑤) (1)
4. 𝑤𝑅𝑣 (3)
5. ¬∀𝑥𝐹𝑥 (𝑣) (3)
6. ¬𝐹𝑎 (𝑣) (5)
7. □𝐹𝑎 (𝑤) (2)
8. 𝐹𝑎

x
(𝑣) (7,4)
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And here is a proof of ∀𝑥∀𝑦(𝑥 =𝑦 →□ 𝑥 =𝑦), the “necessity of identity”:

1. ¬∀𝑥∀𝑦(𝑥 =𝑦 →□ 𝑥 =𝑦) (𝑤) (Ass.)
2. ¬∀𝑦(𝑎=𝑦 →□ 𝑎=𝑦) (𝑤) (1)
3. ¬(𝑎=𝑏 →□ 𝑎=𝑏) (𝑤) (2)
4. 𝑎 = 𝑏 (𝑤) (3)
5. ¬□ 𝑎=𝑏 (𝑤) (3)
6. ¬□ 𝑏=𝑏 (𝑤) (4, 5, LL)
7. 𝑤𝑅𝑣 (6)
8. 𝑏 ≠ 𝑏 (𝑣) (6)
9. 𝑏 = 𝑏

x
(𝑣) (SI)

Exercise 10.2
Use the tree method to show that the following sentences are CK-valid.
(a) □∀𝑥𝐹𝑥 → ∀𝑥□𝐹𝑥
(b) ∃𝑥□𝐹𝑥 →□∃𝑥𝐹𝑥
(c) ∀𝑥□(𝐹𝑥 ∧ 𝐺𝑥) →□∀𝑥𝐹𝑥
(d) □♢∃𝑥𝐹𝑥 →□∃𝑥♢(𝐹𝑥 ∨ 𝐺𝑥)
(e) ∀𝑥□∃𝑦 𝑦=𝑥
(f) ∀𝑥∀𝑦(𝑥 ≠𝑦 →□𝑥 ≠𝑦)

Exercise 10.3
The following sentences are CK-invalid. Can you describe a countermodel for
each? (It may help to construct a tree and inspect its open branches.)
(a) ♢∃𝑥𝐹𝑥 →♢∃𝑥(𝐹𝑥 ∧ 𝐺𝑥)
(b) □∃𝑥𝐹𝑥 → ∃𝑥□𝐹𝑥
(c) ∀𝑥∀𝑦((♢𝐹𝑥 ∧ ♢¬𝐹𝑦) → 𝑥 ≠𝑦)
(d) ∀𝑥□(𝑃𝑥 → 𝑄𝑥) → ∀𝑥(𝑃𝑥 →□𝑄𝑥)

There are also axiomatic calculi for CK. We can, for example, combine the axiom
schemas and rules of classical predicate logic with those of K, and add two new
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schemas: the Barcan Formula (BF) and the “necessity of distinctness”,

(ND) ∀𝑥∀𝑦(𝑥 ≠𝑦 →□𝑥 ≠𝑦).

As I mentioned above, stronger logics can be defined by putting constraints on the
accessibility relation. For example, the system CT is the set of 𝔏𝑀𝑃-sentences that
are valid in the class of constant-domain Kripke models with a reflexive accessibility
relation. CS4 is the set of 𝔏𝑀𝑃-sentences that are valid in the class of constant-
domain Kripke models with a reflexive and transitive accessibility relation. And so
on.

Properties of the accessibility relation still correspond to modal schemas, just as
in chapter 3: (T) corresponds to reflexivity, (4) to transitivity, (G) to convergence,
etc. Recall that a schema corresponds to a property of the accessibility relation if
the schema is valid in all and only the frames in which the accessibility relation has
that property. A frame is a model without an interpretation function. In the present
context, a frame therefore consists of two non-empty sets 𝑊 and 𝐷 and a relation 𝑅
on 𝑊 .

We can still use the tree method or the axiomatic method to test for validity in
logics stronger than CK. To test for CT-validity, for example, we would add the Re-
flexivity rule to the tree rules for CK. To test for CS4-validity, we would add the Re-
flexivity and Transitivity rules. We can get an axiomatic calculus for CT by adding
the (T)-schema to the calculus for CK; for CS4, we can add (T) and (4). And so on
for other systems.

But there are exceptions. Remember S4.2 – the set of 𝔏𝑀-sentences valid in the
class of reflexive, transitive, and convergent Kripke models. Reflexivity corresponds
to (T), transitivity to (4), and convergence to (G). If we add these schemas to the
axiomatic calculus for system K, we get a sound and complete calculus for S4.2. But
if we add the schemas to the calculus for CK, the resulting calculus is not complete
for CS4.2. There are 𝔏𝑀𝑃-sentences that are valid in the class of reflexive, transitive,
and convergent constant-domain models that can’t be derived.

10.2 Quantification and existence

We have assumed that the domain of individuals is the same for every world. This
may seem problematic.
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Earlier today I was baking bread. Let’s call the loaf of bread that I made Loafy.
Intuitively, Loafy could have failed to exist. I could have decided not to bake bread.
Even if determinism is true, we can consider worlds at which the laws of nature or
the origin of the universe are different. In many of these worlds, there are no humans,
and no loafs of bread. So we should allow for worlds at which Loafy doesn’t exist.

If we use 𝑏 as a name for Loafy, we can arguably express Loafy’s existence as

∃𝑥 𝑥 =𝑏.

Why might this express that Loafy exists? Consider a scenario in which Loafy does
exist. In that scenario, there is some thing 𝑥 which is identical to Loafy (namely,
Loafy). Conversely, consider a scenario in which Loafy does not exist. In that sce-
nario, there is no thing 𝑥 which is identical to Loafy. So ∃𝑥 𝑥 = 𝑏 is true in all and
only the scenarios in which Loafy exists.

Now we can sharpen the above worry. Intuitively, it could have been the case
that Loafy doesn’t exist. So ♢¬∃𝑥 𝑥 = 𝑏 is true, on a suitable understanding of the
diamond. But in constant-domain semantics, that sentence is a contradiction: it is
false at every world in every model.

A converse problem arises if we think that something could have existed that
doesn’t actually exist. For example, let’s assume that there could have been unicorns.
If we interpret the predicate 𝑈 as ‘– is a unicorn’ and the box as a suitable kind of
circumstantial necessity, □∀𝑥¬𝑈𝑥 should then be false. But let’s also assume that
no individual in our world could have been a unicorn. So ∀𝑥□¬𝑈𝑥 is true. We then
have a counterexample to the Barcan Formula ∀𝑥□𝐴 →□∀𝑥𝐴. And all instances of
the Barcan Formula are valid in constant-domain semantics.

Exercise 10.4
The Converse Barcan Formula is the schema □∀𝑥𝐴 → ∀𝑥□𝐴. All instances
of the Converse Barcan Formula are CK-valid. Explain why Loafy’s possi-
ble non-existence seems to provide a counterexample to the Converse Barcan
Formula.
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Exercise 10.5
Consider the following four schemas.

(1) ♢∃𝑥𝐴 → ∃𝑥♢𝐴
(2) □∃𝑥𝐴 → ∃𝑥□𝐴
(3) ∃𝑥□𝐴 →□∃𝑥𝐴
(4) ∃𝑥♢𝐴 →♢∃𝑥𝐴

(a) Are any of (1)–(4) equivalent to the Barcan Formula or the Converse
Barcan Formula (given the duality of □ and ♢, of ∀𝑥 and ∃𝑥, and the
standard truth-tables for propositional connectives)?

(b) Which of these schemas do you think are intuitively valid on a metaphys-
ical interpretation of the box and the diamond?

An obvious response to these problems is to replace constant-domain semantics
with a semantics in which the domain of individuals can vary from world to world.
We will explore this option in the following section. First I want to mention two
other lines of response.

Some philosophers have argued that we should bite the bullet: we are simply mis-
taken when we judge that Loafy could have failed to exist, or that anything could
have existed that doesn’t actually exist. In temporal logic, biting the bullet means
to accept that anything that has ever existed still exists today, and that anything that
exists today has always existed and is always going to exist. In epistemic logic, bit-
ing the bullet means to accept that nobody can be unsure or ignorant about which
individuals exists: if something exists, nobody can fail to know that it exists, nor can
anyone believe that an individual exists that doesn’t really exist.

A different response is to break the link between quantification and existence. ∃𝑥
is traditionally called an “existential” quantifier, and pronounced ‘there is an 𝑥’ or
‘there exists an 𝑥’. But 𝔏𝑀𝑃 is a made-up language. We can make its symbols mean
whatever we want. We can give a different interpretation of ∃𝑥 so that ‘Loafy exists’
can’t be translated as ∃𝑥 𝑥 =𝑏.

One alternative to the standard interpretation of quantifiers is associated with the
Austrian philosopher Alexius Meinong. Meinong observed that when we describe
beliefs, plans, hopes, or fears, we often seem to refer to non-existent objects. We
might say that someone is afraid of a ghost, or that they are searching for a golden
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mountain – even though there are no ghosts or golden mountains. According to
Meinong, people who are searching for a golden mountain are really searching for
something. That something is a golden mountain. But it is not an existent golden
mountain. Meinong concluded that besides existent mountains, there are also non-
existent mountains.

Quantifiers that range over both existent and non-existent individuals are called
Meinongian. If the 𝔏𝑀𝑃-quantifiers are Meinongian, then clearly ∃𝑥 𝑥 = 𝑏 does not
translate ‘Loafy exists’.

Meinong’s postulation of non-existent individuals is widely rejected as incoherent.
It certainly raises difficult questions. Suppose you are searching for a golden moun-
tain. You probably don’t have any firm views about the mountain’s height. You are
not looking for a mountain that is exactly 2000 meters tall, nor are you looking for a
mountain that is exactly 2100 meters tall. On the Meinongian account, there is a gen-
uine mountain that you are looking for. It is a mountain that is not 2000 meters tall,
not 2100 meters tall, and doesn’t have any other particular height either. But how
could there be a mountain without any particular height? Besides, it also doesn’t
seem right to say that you are looking for a peculiar “mountain” that doesn’t have
any height and doesn’t exist. Intuitively, you are looking for an existent mountain
that does have a height.

A more straightforward alternative to the standard interpretation of quantifiers is
the possibilist interpretation. Here we assume that ∀𝑥 and ∃𝑥 range not only over
things that exist at the world at which the quantifiers are interpreted, but over every-
thing that exists at any possible world. On this interpretation, too, ∃𝑥 𝑥 =𝑏 no longer
states that Loafy exists. It merely states that Loafy could have existed, in an unre-
stricted sense of ‘could’. Constant-domain semantics then only assumes that the set
of individuals that exist at some world or other does not vary from world to world.

One downside of the possibilist interpretation is that it goes against the “inter-
nalist” spirit of modal logic. As we saw in section 9.2, one of the key features of
modal logic is that it looks at the structure of worlds from the inside, from the per-
spective of a particular world, with only the modal operators providing (incomplete)
access to other worlds. Possibilist quantifiers would provide unrestricted access to
the inhabitants of other worlds.

Let’s set aside these alternatives and see how constant-domain semantics could
be changed to allow for variable domains.
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10.3 Variable-domain semantics

In variable-domain models, every world 𝑤 is associated with its own individual do-
main 𝐷𝑤. Loafy the bread may be a member of 𝐷𝑤 but not of 𝐷𝑣. Quantifiers range
over the individuals in the local domain of the world at which they are interpreted:
∃𝑥𝐹𝑥 is true at 𝑤 iff 𝐹𝑥 is true (at 𝑤) of some individual in 𝐷𝑤.

Here is our revised definition of an 𝔏𝑀𝑃-model.

Definition 10.3
A variable-domain Kripke model for 𝔏𝑀𝑃 is a structure 𝑀 consisting of

1. a non-empty set 𝑊 (the “worlds”),
2. a binary (“accessibility”) relation 𝑅 on 𝑊 ,
3. for each world 𝑤, a non-empty set 𝐷𝑤 (of “individuals”), and
4. an interpretation function 𝑉 that assigns

• to each name a member of some domain 𝐷𝑤, and
• to each 𝑛-place predicate and world 𝑤 a set of 𝑛-tuples from 𝐷𝑤.

To complete the semantics, we need to explain how 𝔏𝑀𝑃-sentences are interpreted
relative to any given world in a variable-domain model. This raises a problem.

Since Loafy could have failed to exist, we want to have models in which♢¬∃𝑥 𝑥 =𝑏
is true at some world 𝑤. It follows that ¬∃𝑥 𝑥 =𝑏 is true at some world 𝑣 accessible
from 𝑤. Intuitively, 𝑣 is a world at which Loafy doesn’t exist. The problem is that we
need to explain how a sentence that contains a name (here, 𝑏) should be interpreted
at a world (here, 𝑣) where the thing that’s picked out by the name doesn’t exist.

In the case of ¬∃𝑥 𝑥 = 𝑏, the sentence should come out true. Other cases are less
clear. What about 𝑏=𝑏? Is Loafy identical to Loafy at 𝑣, where Loafy doesn’t exist?
What about 𝐹𝑏, ¬𝐹𝑏, or 𝐹𝑏 ∨ ¬𝐹𝑏? Is Loafy delicious at 𝑣? Is Loafy not delicious
at 𝑣? Is Loafy either delicious or not delicious at 𝑣?

These questions are discussed not just in modal logic, but also in a branch of non-
modal logic called free logic. Free logic differs from classical predicate logic by
dropping the assumption that every name has a referent. The assumption is, after all,
not true for names in natural language.

Consider the story of ‘Vulcan’. In the 19th century, it was observed that Mercury’s
path around the Sun conforms to Newton’s laws only if there is another, smaller
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planet between Mercury and the Sun. With the help of Newton’s laws, astronomers
calculated the size and position of that planet, and called it Vulcan. But Vulcan was
never discovered. Eventually, Mercury’s path was explained by Einstein’s theory of
relativity, without assuming any new planets. The name ‘Vulcan’ turned out to be
empty: it doesn’t refer to anything.

How should we formalize reasoning with empty names? The orthodox answer
is that we shouldn’t: the function of a name is to pick out an individual; if there is
no individual to be picked out, we shouldn’t use a name. Proponents of free logic
disagree. They hold that we can perfectly well reason with empty names. We then
need to answer the same questions that I posed above: if 𝑏 is an empty name, how
should we interpret 𝑏 = 𝑏, 𝐹𝑏, ¬𝐹𝑏, and 𝐹𝑏 ∨ ¬𝐹𝑏?

Within free logic, there are broadly three approaches.
The first is Meinongian. It assumes that apparently empty names are not really

empty after all; they merely pick out a non-existent individual. Statements with such
names are then interpreted as usual: 𝐹𝑏 may be true or false, depending on whether
the (non-existent) individual picked out by 𝑏 has the property expressed by 𝐹.

Non-Meinongian versions of free logic usually assume that atomic sentences with
empty names are never true: if 𝑏 is empty, then 𝐹𝑏 can’t be true. The idea is that
predicates express properties, and if something doesn’t exist then it doesn’t have any
properties. For example, it is not true that Vulcan is a planet – as you can see from
the fact that Vulcan would not occur on a list of all planets. Nor is it true that Vulcan
orbits the sun, or that Vulcan has any particular mass.

What shall we say about ¬𝐹𝑏 then, if 𝑏 is an empty name? In some versions of
free logic, the standard semantic rules for complex sentences are applied: since 𝐹𝑏
is not true, ¬𝐹𝑏 is true, and so is 𝐹𝑏∨¬𝐹𝑏. Other versions of free logic assume that
if 𝑏 doesn’t refer then neither 𝐹𝑏 nor ¬𝐹𝑏 is true. Since a sentence is called false
iff its negation is true, this means that 𝐹𝑏 and ¬𝐹𝑏 are neither true nor false. We
get a three-valued semantics that can be spelled out in different ways, with different
verdicts on sentences like 𝐹𝑏 ∨ ¬𝐹𝑏.

Each version of free logic can be used to give a semantics for modal predicate logic
with variable domains. I am going to use the two-valued non-Meinongian approach,
mainly because it is the simplest. We will assume that at worlds where Loafy doesn’t
exist, every atomic sentence involving a name for Loafy is false: 𝑏 = 𝑏 is false, 𝐹𝑏
is also false, but ¬𝐹𝑏 and 𝐹𝑏 ∨ ¬𝐹𝑏 are true.
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Definition 10.4: Variable-domain Kripke semantics
If 𝑀 = ⟨𝑊, 𝑅, 𝐷, 𝑉 ⟩ is a variable-domain Kripke model, 𝑤 is a member of
𝑊 , 𝜙 is an 𝑛-place predicate (for 𝑛 ≥ 0), 𝜏1, … , 𝜏𝑛 are terms, 𝜒 is a variable,
and 𝑔 is a variable assignment, then

(a) 𝑀, 𝑤, 𝑔 |= 𝜙𝜏1 … 𝜏𝑛 iff ⟨[𝜏1]𝑀,𝑔, … , [𝜏𝑛]𝑀,𝑔 ⟩ ∈ 𝑉(𝜙, 𝑤).
(b) 𝑀, 𝑤, 𝑔 |= 𝜏1 = 𝜏2 iff [𝜏1]𝑀,𝑔 = [𝜏2]𝑀,𝑔 and [𝜏1]𝑀,𝑔 ∈ 𝐷𝑤.
(c) 𝑀, 𝑤, 𝑔 |= ¬𝐴 iff 𝑀, 𝑤, 𝑔 |≠ 𝐴.
(d) 𝑀, 𝑤, 𝑔 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑤, 𝑔 |= 𝐴 and 𝑀, 𝑤, 𝑔 |= 𝐵.
(e) 𝑀, 𝑤, 𝑔 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑤, 𝑔 |= 𝐴 or 𝑀, 𝑤, 𝑔 |= 𝐵.
(f) 𝑀, 𝑤, 𝑔 |= 𝐴 → 𝐵 iff 𝑀, 𝑤, 𝑔 |≠ 𝐴 or 𝑀, 𝑤, 𝑔 |= 𝐵.
(g) 𝑀, 𝑤, 𝑔 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑤, 𝑔 |= (𝐴 → 𝐵) and 𝑀, 𝑤, 𝑔 |= (𝐵 → 𝐴).
(h) 𝑀, 𝑤, 𝑔 |= ∀𝜒𝐴 iff 𝑀, 𝑤, 𝑔′ |= 𝐴 for all 𝜒-variants 𝑔′ of 𝑔 for

which 𝑔′(𝜒) ∈ 𝐷𝑤.
(i) 𝑀, 𝑤, 𝑔 |= ∃𝜒𝐴 iff 𝑀, 𝑤, 𝑔′ |= 𝐴 for some 𝜒-variant 𝑔′ of 𝑔 for

which 𝑔′(𝜒) ∈ 𝐷𝑤.
(j) 𝑀, 𝑤, 𝑔 |= □𝐴 iff 𝑀, 𝑣, 𝑔 |= 𝐴 for all 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣.
(k) 𝑀, 𝑤, 𝑔 |= ♢𝐴 iff 𝑀, 𝑣, 𝑔 |= 𝐴 for some 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣.
𝐴 is true at 𝑤 in 𝑀 iff 𝑀, 𝑤, 𝑔 |= 𝐴 for all assignments 𝑔 for 𝑀.

A sentence is VK-valid (‘V’ for ‘variable-domain’) iff it is true at all worlds in all
variable-domain models.

The system VK is weaker than classical predicate logic. Not everything that is
valid in classical predicate logic is CK-valid. For example, both 𝑏 = 𝑏 and ∃𝑥 𝑥 = 𝑏
are valid in classical predicate logic, but they are not true at every world in every
variable-domain model. If 𝑉(𝑏) is not a member of 𝐷𝑤, then 𝑏 = 𝑏 and ∃𝑥 𝑥 =𝑏 are
false at 𝑤.

On the other hand, you can check that ∀𝑥 𝑥 = 𝑥 is VK-valid. So we don’t just
have to revise the rules for identity. We also need to revise the rule of “universal
instantiation”: from the fact that a universal generalisation like ∀𝑥 𝑥 = 𝑥 is true (at
a world, or at all worlds), we can’t infer that all its instances are true: 𝑏 = 𝑏 may
be false. For another example, consider a world 𝑤 where everything is made of
chocolate. Let 𝐹 express the property of being made of chocolate. ∀𝑥𝐹𝑥 is true at
𝑤. But we can’t infer that Loafy the bread is made of chocolate (𝐹𝑏) at 𝑤, for Loafy
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may not exist at 𝑤.
In the type of free logic we have adopted, the rule of universal instantiation re-

quires another premise: from ∀𝑥𝐴 we can infer 𝐴[𝑏/𝑥] only if we also know that
𝑏 exists – which can be expressed as ∃𝑥 𝑥 = 𝑏, or even simpler as 𝑏 = 𝑏, given our
assumption that atomic sentences with empty names are always false.

Here are the revised tree rules for VK. I only give the quantifier rules for ∀𝜒𝐴 and
∃𝜒𝐴. You can find the rules for ¬∀𝜒𝐴 and ¬∃𝜒𝐴 by converting these into ∃𝜒¬𝐴
and ∀𝜒¬𝐴, respectively.

∀𝜒𝐴

ggggg
ggggg

gg
WWWWW

WWWWW
WW

(𝜔)

𝜂≠𝜂 (𝜔) 𝐴[𝜂/𝜒] (𝜔)
↑

old

∃𝜒𝐴 (𝜔)

𝜂 = 𝜂 (𝜔)
𝐴[𝜂/𝜒] (𝜔)

↑
new

We keep the rule for Leibniz’s Law. But we replace the Self-Identity and Identity
Invariance rules by the following three rules.

Existence

𝜂 = 𝜂 (𝜔)
↑

new

Identity Invariance

𝜂1 = 𝜂2 (𝜔)
𝜂1 = 𝜂1 (𝜈)

𝜂1 = 𝜂2 (𝜈)

Φ𝜂1 … 𝜂𝑛 (𝜔)

𝜂1 = 𝜂1 (𝜔)
𝜂2 = 𝜂2 (𝜔)

⋮
𝜂𝑛 = 𝜂𝑛 (𝜔)

The Existence rule reflects our assumption that the domain of individuals is never
empty. The unnamed last rule is a rule for expanding atomic nodes. From the as-
sumption that 𝐹𝑏 is true at a world, for example, the rule allows us to infer that 𝑏
exists at that world, which can be expressed as 𝑏=𝑏. We then don’t need a separate
rule of Self-Identity.
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Exercise 10.6
Use the tree method to show that the following sentences are VK-valid.
(a) ∃𝑥□𝐹𝑥 →□∃𝑥𝐹𝑥
(b) □∀𝑥(𝐹𝑥 → 𝐺𝑥) → (□∀𝑥𝐹𝑥 →□∀𝑥𝐺𝑥)
(c) □∃𝑥 𝑥 =𝑥
(d) ♢𝐹𝑎 →♢∃𝑥𝐹𝑥
(e) 𝑎=𝑏 →□(𝑎=𝑎 → 𝑎=𝑏)

It is easy to check that the Barcan Formula, ∀𝑥□𝐴 →□∀𝑥𝐴, and its converse,
□∀𝑥𝐴 → ∀𝑥□𝐴, are invalid in variable-domain semantics. (By this I mean that not
all their instances are valid.) In fact, we can now prove that the Barcan formula cor-
responds to the assumption that whatever exists at an accessible world also exists at
the original world, while its converse corresponds to the assumption that whatever
exists at a world also exists at all accessible worlds.

Observation 10.2:

(i) (CBF) is valid on a variable-domain frame iff the frame has increasing
domains, meaning that whenever 𝑤𝑅𝑣, then 𝐷𝑤 ⊆ 𝐷𝑣.

(ii) (BF) is valid on a variable-domain frame iff the frame has decreasing
domains, meaning that whenever 𝑤𝑅𝑣 then 𝐷𝑣 ⊆ 𝐷𝑤.

Proof of (i). Suppose some variable-domain frame 𝐹 does not have increasing
domains. Then 𝐹 has a world 𝑤 whose domain 𝐷𝑤 contains an individual 𝑑 that
does not exist at some 𝑤-accessible world 𝑣. Let 𝑉 be an interpretation function
on 𝐹 so that 𝑉(𝐹, 𝑤) = 𝐷𝑤 and 𝑉(𝐹, 𝑣) = 𝐷𝑣. In the model composed of 𝐹 and
𝑉 , □∀𝑥𝐹𝑥 is true at 𝑤, but ∀𝑥□𝐹𝑥 is false, since 𝑑 is not in 𝑉(𝐹, 𝑣). So (CBF) is
not true at all worlds in all models based on 𝐹.

In the other direction, suppose (CBF) is not valid on a frame 𝐹. This means that
there is a world 𝑤 in some model 𝑀 based on 𝐹 at which some instance of □∀𝑥𝐴
is true while ∀𝑥□𝐴 is false. If ∀𝑥□𝐴 is false at 𝑤, then there is some 𝑤-accessible
world 𝑣 at which 𝐴 is false of some individual 𝑑 in 𝐷𝑤. But since □∀𝑥𝐴 is true
at 𝑤, 𝐴 is true of all members of 𝐷𝑣. So 𝑑 is not in 𝐷𝑣. And so 𝐹 does not have
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increasing domains.
The proof of (ii) is similar.

Exercise 10.7
Definition 10.3 requires that every name in every model picks out a possible
individual. In that sense, the definition does not allow for genuinely empty
names. How could we change definitions 10.3 and 10.4 if we wanted to allow
for names that don’t pick out anything?

10.4 Trans-world identity

In section 9.5 I mentioned an apparent problem with Leibniz’ Law. The Law allows
us to reason from □𝐹𝑎 and 𝑎 = 𝑏 to □𝐹𝑏. On some interpretations of the box,
however, the inference looks problematic. In the Superman stories, Lois Lane knows
that Superman can fly, and Superman is identical to Clark Kent. Can we infer that
Lois knows that Clark Kent can fly?

If we can, we would have to conclude that Lois Lane has inconsistent beliefs, since
she also believes that Clark Kent cannot fly. She would believe that Clark Kent
can’t fly, but also that he can fly. Intuitively, however, Lois’s beliefs are perfectly
consistent. What she lacks is information, not logical acumen. Her belief worlds
are not worlds at which someone can both fly and not fly. Rather, they are worlds
at which one person plays the Superman role and a different person plays the Clark
Kent role.

Consider also the case of Julius. When we introduce the name ‘Julius’ for whoever
invented the zip, we can be sure that Julius invented the zip. But it would be absurd
to think that we have found out who invented the zip merely by making a linguistic
stipulation. If before introducing the name ‘Julius’, we were unsure whether the
zip was invented by Benjamin Franklin or Whitcomb L. Judson, the introduction of
the new name does nothing to remove our ignorance. There are still epistemically
accessible worlds at which the zip was invented by Franklin and others at which it
was invented by Judson. Knowing that Julius invented the zip is not the same thing
as knowing that Judson invented the zip, even if in fact Julius = Judson.

Similar problems have been argued to arise in the logic of metaphysical modality.
Imagine a clay statue, standing on a shelf. Let’s call it Goliath. Since Goliath is
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made of clay, there is also a piece of clay on the shelf, at the exact same spot as the
statue. Let’s call that piece of clay Lumpl. How is Lumpl related to Goliath? We
might want to say that they are one and the same thing: Lumpl = Goliath. After all,
there is only one statue-shaped object on the shelf, not two. But we might also want
to say that Lumpl could have had the shape of a bowl, while Goliath could not: if
the clay had been formed into a bowl rather than a statue, then Lumpl would have
been a bowl, but Goliath, the statue, would not have existed. Goliath is necessarily
not a bowl, but Lumpl is not necessarily not a bowl. We have □¬𝐵𝑔 but not □¬𝐵𝑙,
even though 𝑙 =𝑔.

Exercise 10.8
Explain why the three examples I just presented also cast doubt on the “neces-
sity of identity”, ∀𝑥∀𝑦(𝑥 =𝑦 →□ 𝑥 =𝑦).

Semantically, Leibniz’ Law corresponds to the assumption that names are directly
referential, meaning that the only contribution a name makes to the truth-value of
a sentence is its referent. If names are directly referential, and two names have the
same referent, then it makes no difference which of them we use: replacing one by
the other never affects the truth-value of a sentence.

So far, we have assumed direct reference in both constant-domain and variable-
domain semantics. On either account, names are interpreted as simply picking out an
individual. It is a matter of debate whether names in ordinary language are directly
referential. Some hold that Lois Lane really has inconsistent beliefs. Others hold that
Lois neither believes that Superman can fly nor that Clark Kent cannot fly, because
the objects of belief or knowledge are never adequately represented by statements
involving ordinary names. (This also gets around the Julius problem.) With respect
to Lumpl and Goliath, some simply deny that Lumpl is identical to Goliath.

We will not descend into these debates. Instead, let’s explore how we could change
our semantics for 𝔏𝑀𝑃 to block the relevant applications of Leibniz’ Law. There are
several ways to achieve this. We will only look at one.

The approach we will explore drops the assumption that names are rigid. A name
is rigid if it picks out the same individual relative to any possible world. Earlier, we
assumed that no matter at which world the sentence 𝐹𝑎 is interpreted, the name 𝑎 al-
ways picks out the same individual, 𝑉(𝑎). A name like ‘Julius’, however, seems to be
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non-rigid. It picks out different individuals relative to different (epistemically) pos-
sible worlds. Relative to a world where Benjamin Franklin invented the zip, ‘Julius’
picks out Benjamin Franklin. Relative to a world where Whitcomb L. Judson in-
vented the zip, the name picks out Whitcomb L. Judson.

Let’s assume, then, that a model’s interpretation function assigns an individual to
each name relative to each world. This is equivalent to assuming that each name
is interpreted as expressing a function from worlds to individuals, telling us which
individual the name picks out relative to any given world. Functions from worlds to
individuals are known as individual concepts, which is why the present approach
is often called individual concept semantics.

To motivate this label, return to Lois Lane. When Lois is thinking about Super-
man, she is thinking about the audacious hero whose superhuman powers she has
witnessed on several occasions. When she is thinking about Clark Kent, she is think-
ing about her shy and awkward colleague. Lois has distinct “concepts” for Superman
and Clark Kent, one associated with the Superman role, the other with the Clark Kent
role. The two concepts actually pick out the same person because one and the same
person plays both the Superman role and the Clark Kent role. We can model each
of these roles as a function from worlds to individuals. The Superman role is repre-
sented by a function that maps every world to whoever plays the Superman role at
that world. The Clark Kent role is represented by a function that maps every world
to whoever plays the Clark Kent role at that world. For the world of the Superman
stories, both functions return the same individual. For Lois Lane’s belief worlds,
they return different individuals.

Exercise 10.9
What individual concepts might be associated with the names ‘Lumpl’ and
‘Goliath’?

We can easily convert our earlier constant-domain and variable-domain seman-
tics into an individual concept semantics. We first need to change the definition
of a model, so that 𝑉 assigns individual concepts to names. In variable-domain
semantics, we might stipulate that an individual concept never maps a world to an
individual that doesn’t exist at the world. We might also want to allow for “partial
concepts”: individual concepts that don’t return any value for certain worlds.
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It is advisable to give a parallel treatment for names and variables. So we’ll also
assume that an assignment function 𝑔 interprets each variable as expressing an in-
dividual concept. In the truth definition, we replace [𝜏]𝑀,𝑔, by [𝜏]𝑀,𝑤,𝑔, which is
defined as the referent of 𝜏 in 𝑀 at 𝑤, relative to 𝑔. (That is, if 𝜏 is a name, then
[𝜏]𝑀,𝑤,𝑔 = 𝑉(𝜏)(𝑤); if 𝜏 is a variable, then [𝜏]𝑀,𝑤,𝑔 = 𝑔(𝜏)(𝑤).) Finally, we
adjust the definition of an 𝑥-variant so that 𝑔′ is an 𝑥-variant of 𝑔 iff 𝑔′ differs from
𝑔 at most in the individual concept it assigns to 𝑥.

The resulting logic of individual concepts has some unexpected features. For
example, all instances of the following schema become valid:

□∃𝑥𝐴 → ∃𝑥□𝐴

To see why, consider the instance □∃𝑥𝐹𝑥 → ∃𝑥□𝐹𝑥. Suppose the antecedent is true
at some world in some model. This means that at every accessible world 𝑣, there
is at least one individual that is 𝐹. In this case, there are functions that map every
accessible world to some individual that is 𝐹. Let 𝑔′(𝑥) be some such function.
Relative to 𝑔′, □𝐹𝑥 is true at 𝑤. So ∃𝑥□𝐹𝑥 is true at 𝑤.

This is widely regarded as problematic. It would suggest that the two readings of
‘something necessarily exists’ are actually equivalent: it is necessary that something
or other exists just in case there is something that necessarily exists.

Another problematic feature of individual concept semantics is that the resulting
logic has no sound and complete proof procedure. There are no tree rules, or natural
deduction rules, or axioms and inference rules that would allow proving all and only
the sentences that are true at all worlds in all models of individual concept semantics
(no matter if we assume constant or variable domains). It’s not just that no-one has
yet found a suitable proof method. One can prove that no such method exists.

Both of these problems can be avoided by putting further constraints on models.
We have assumed that any function from worlds to individuals is a candidate inter-
pretation for a name or a variable. Relative to a given assignment function, a variable
may pick out Donald Trump in one world, the Eiffel tower in another, a fried egg in a
third, and so on. Ordinary concepts are not that gerrymandered. We might therefore
identify a certain subset of all individual concepts as “eligible” for being expressed
by names or variables. If this is done sensibly, □∃𝑥𝐴 → ∃𝑥□𝐴 becomes invalid, and
complete proof methods become available.
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10 Semantics for Modal Predicate Logic

Exercise 10.10
The following line of thought may be attributed to Descartes. “I am certain
that I exist, but not that my body exists. [After all, it could turn out that I am
a disembodied soul.] Therefore: I am not my body.” Translate the argument
into 𝔏𝑀𝑃. Is it CK-valid? Is it VK-valid? Do you find it convincing?

Exercise 10.11
The following sentence sounds contradictory.

Some ticket will win, but I don’t know if it will win.

Translate the sentence into 𝔏𝑀𝑃. Explain why its apparent contradictoriness
poses a problem for accounts on which variables are treated as directly refer-
ential.

Exercise 10.12
In individual concept semantics, both the necessity of identity and the neces-
sity of distinctness are invalid. How could we change the semantics to make
the necessity of identity valid, but not the necessity of distinctness? (Assume
constant domains.)
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