
7 Temporal Logic

7.1 Reasoning about time

It is currently raining in Edinburgh. But it wasn’t raining yesterday, and perhaps it
won’t rain tomorrow. Let’s introduce some operators to formalize reasoning about
the unfolding of events through time.

If we read 𝑟 as ‘it is raining’, we will use F𝑟 to express that is will be raining at
some point in the future. We will use P𝑟 to express that it has been raining at some
point in the past. In general:

F 𝐴 is true at a time 𝑡 iff 𝐴 is true at some time after 𝑡.
P 𝐴 is true at a time 𝑡 iff 𝐴 is true at some time before 𝑡.

The operators F and P can be nested. We can use F P 𝑟 to express that at some
point it will have rained, P F 𝑟 to say that it was once going to rain, P P 𝑟 to say that
there was a time before which it rained, and F F 𝑟 to say that there will come a time
after which it will rain.

Unlike □ and ♢, F and P are not duals of each other: ¬P𝐴 is not equivalent to
F¬𝐴, and ¬F𝐴 is not equivalent to P¬𝐴. But it is useful to have duals of F and P.
We therefore introduce two more operators. G will be the dual of F, and H the dual
of P.

Intuitively, G 𝐴 means that 𝐴 is always going to be the case. (Hence the symbol
‘G’.) If it is not the case that at some point in the future it will not rain (¬F¬𝑟), then
it is always going to be the case that it will rain (G 𝑟). Similarly, H 𝐴 means that 𝐴
has always been the case. If it is not the case that at some point in the past it was not
raining (¬P¬𝑟), then it has always been raining (H 𝑟).

We can state the truth-conditions of G 𝐴 and H 𝐴 in parallel to the above truth-
conditions for F 𝐴 and P 𝐴:

G 𝐴 is true at a time 𝑡 iff 𝐴 is true at all times after 𝑡.
H 𝐴 is true at a time 𝑡 iff 𝐴 is true at all times before 𝑡.
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7 Temporal Logic

The language of standard propositional logic, extended by the four operators F, P, G, H
is known as the language of basic temporal logic. We will sometimes call it 𝔏𝑡.

Exercise 7.1
Translate the following sentences into the language of basic temporal logic.
(a) It has never been warm.
(b) There will be a sea battle.
(c) There will not have been a sea battle.
(d) At some point, it will be warm or it will have been warm.
(e) If you haven’t studied, you won’t pass the exam.
(f) I was having tea when the door bell rang.

7.2 Temporal models

A complete scenario for temporal logic needs to tell us what times there are, how they
are ordered, and what is going on at each of them. We can represent such a scenario,
together with an interpretation of 𝔏𝑡’s non-logical vocabulary, by a structure that
settles (a) what times there are, (b) which times come before or after which others,
and (c) which sentence letters are true at which times. This is enough to determine,
for every 𝔏𝑡-sentence and every time, whether the sentence is true at that time.

Definition 7.1: Temporal Model
A temporal model consists of
• a non-empty set 𝑇 (of “times”),
• a binary relation < on 𝑇 (the precedence relation),
• a function 𝑉 that assigns to each sentence letter of 𝔏𝑇 a subset of 𝑇 .

We use ‘𝑀, 𝑡 |= 𝐴’ as a short-hand notation to express that sentence 𝐴 is true at
time 𝑡 in model 𝑀. The following definition formally specifies the truth-value of
every 𝔏𝑇 -sentence at every time in every model.
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7 Temporal Logic

Definition 7.2: Standard Temporal Semantics
If 𝑀 = ⟨𝑇, <, 𝑉 ⟩ is a temporal model, 𝑡 is a member of 𝑇 , 𝑃 is any sentence
letter, and 𝐴, 𝐵 are any 𝔏𝑇 -sentences, then

(a) 𝑀, 𝑡 |= 𝑃 iff 𝑡 is in 𝑉(𝑃).
(b) 𝑀, 𝑡 |= ¬𝐴 iff 𝑀, 𝑡 |≠ 𝐴.
(c) 𝑀, 𝑡 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑡 |= 𝐴 and 𝑀, 𝑡 |= 𝐵.
(d) 𝑀, 𝑡 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑡 |= 𝐴 or 𝑀, 𝑡 |= 𝐵.
(e) 𝑀, 𝑡 |= 𝐴 → 𝐵 iff 𝑀, 𝑡 |≠ 𝐴 or 𝑀, 𝑡 |= 𝐵.
(f) 𝑀, 𝑡 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑡 |= (𝐴 → 𝐵) and 𝑀, 𝑡 |= (𝐵 → 𝐴).
(g) 𝑀, 𝑡 |= F 𝐴 iff 𝑀, 𝑠 |= 𝐴 for some 𝑠 ∈ 𝑇 such that 𝑡 < 𝑠.
(h) 𝑀, 𝑡 |= G 𝐴 iff 𝑀, 𝑠 |= 𝐴 for all 𝑠 ∈ 𝑇 such that 𝑡 < 𝑠.
(i) 𝑀, 𝑡 |= P 𝐴 iff 𝑀, 𝑠 |= 𝐴 for some 𝑠 ∈ 𝑇 such that 𝑠 < 𝑡.
(j) 𝑀, 𝑡 |= H 𝐴 iff 𝑀, 𝑠 |= 𝐴 for all 𝑠 ∈ 𝑇 such that 𝑠 < 𝑡.

Clause (a) says that a sentence letter is true at a time in a model iff the model’s in-
terpretation function specifies that the sentence letter is true at that time. Clauses (b)–
(f) say that the truth-functional connectives have their normal truth-table meaning
at each time. Clauses (g)–(j) formalize the truth-conditions for temporal sentences
from the previous section.

All this should remind you of our Kripke semantics for 𝔏𝑀 in chapter 3. In fact,
temporal models are Kripke models, as defined on page 52. I have merely relabelled
the set ‘𝑊 ’ as ‘𝑇 ’, and the relation ‘𝑅’ as ‘<’. Definition 7.2 resembles definition
3.2 from page 53, except that we have two box-like operators G and H, and two
diamond-like operators F and P. The language of basic temporal logic is bi-modal,
with forward-looking operators (F and G) and backward-looking operators (P and H).
Unlike ordinary models for multi-modal languages (definition 5.1), temporal models
have only a single accessibility relation. That’s because the accessibility relation for
P and H is definable from the accessibility relation for F and G: a time 𝑠 is earlier
than a time 𝑡 iff 𝑡 is later than 𝑠.

Let’s look at an example of a temporal model. For the set of times 𝑇 , we use
the set of natural numbers 0,1,2, etc. Let’s say that the precedence relation < holds
between 𝑡 and 𝑠 iff 𝑡 is smaller than 𝑠. So 0 < 1 and 1 < 25. (We could just as well
have stipulated that < holds between 𝑡 and 𝑠 iff 𝑡 is greater than 𝑠; we would then
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7 Temporal Logic

have 1 < 0 and 25 < 1. In temporal logic, the symbol ‘<’ means ‘earlier than’, not
‘smaller than’.) Finally, let’s say that the interpretation function assigns to 𝑝 the set
of all even numbers.

Let’s call this model 𝑀. By definition 7.2, we can figure out the following facts,
among others.

• 𝑀, 0 |= 𝑝 (because 0 is even);
• 𝑀, 0 |= F 𝑝 (because there are even numbers greater than 0);
• 𝑀, 0 |= G F 𝑝 (because for every number there is a greater number that is even);
• 𝑀, 0 |= ¬ F G 𝑝 (because there is no number for which all greater numbers are

even).

Exercise 7.2
Now let 𝑀 be the following model. As before, 𝑇 is the set of natural numbers
{0, 1, 2, …}, and 𝑡 < 𝑠 iff 𝑡 is smaller than 𝑠. This time, 𝑉(𝑝) is the set of
numbers smaller than 10. Which of the following statements are true?
(a) 𝑀, 0 |= F 𝑝 ∧ F ¬𝑝
(b) 𝑀, 0 |= G ¬𝑝
(c) 𝑀, 0 |= F G ¬𝑝
(d) 𝑀, 0 |= G F 𝑝
(e) 𝑀, 0 |= G(F 𝑝 → F F 𝑝)
(f) 𝑀, 0 |= F H 𝑝
(g) 𝑀, 0 |= ¬ P(𝑝 ∨ ¬𝑝)
(h) 𝑀, 0 |= H 𝑝

Real times are, of course, not numbers. When I say that ‘it is raining’ is true now,
I don’t mean that the sentence is true at a number. It isn’t obvious what kinds of
things times are. Fortunately, this doesn’t matter for us, just as the nature of possible
worlds doesn’t matter for the logic of possibility and necessity. As long as the formal
structure of the times in a scenario matches the structure of the natural numbers, it
does no harm to use numbers as times in a model of the scenario.

The formal structure of time in a temporal model is captured by the relevant frame:
the pair ⟨𝑇, < ⟩ of the set of times and the precedence relation. Frames in temporal
logic are also called flows of time. Different applications of temporal logic often
come with different assumptions about the flow of time.
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7 Temporal Logic

In computer science, for example, the “times” 𝑇 are often understood as possible
states of a computational process; the precedence relation holds between states 𝑡 and
𝑠 iff the computation can lead from 𝑡 to 𝑠. If the computation is indeterministic, so
that a given state can have different successors, the relevant flow of time will involve
forks towards the future: we can have different “times” 𝑠 and 𝑟 such that 𝑡 < 𝑠 and
𝑡 < 𝑟 but neither 𝑠 < 𝑟 nor 𝑟 < 𝑠. Here the precedence relation cannot be modelled by
the less-than relation on the natural numbers, because the structure of the less-than
relation does not include forks.

In other applications, we may be interested in how the weather changes from day
to day. Here we might identify the relevant times with days and the precedence
relation with the earlier-relation between days – even though intuitively a day is not
a single time, but an interval comprising many times. For this application, the natural
numbers might have the right formal structure.

For yet other applications, we may want to assume that time is dense, meaning
that whenever 𝑡 < 𝑠 then there is another point of time lying in between 𝑡 and 𝑠. This
assumption is common in physics. The natural numbers, by contrast, have a discrete
structure. There is no natural number in between 2 and 3. For dense models, we
could use real or rational numbers (fractions) instead of natural numbers.

If we want to take seriously what physics tells us about time, it is not enough to
assume that time is dense. We also need to reconceptualize the set 𝑇 . According
to the theory of special relativity, whether a point in time is earlier or later than
another is relative to a spatial frame of reference. An adequate model of relativistic
time must therefore include a representation of space. In these spacetime models
(or Minkowski models), the set 𝑇 consists of spacetime points ⟨𝑥1, 𝑥2, 𝑥3, 𝑡 ⟩ with
three spatial and one temporal coordinate; (𝑥1, 𝑥2, 𝑥3, 𝑡) < (𝑦1, 𝑦2, 𝑦3, 𝑠) holds iff the
second point can be reached from the first without travelling faster than the speed of
light.

7.3 Logics of time

Let’s define the minimal temporal logic K𝑡 as the set of 𝔏𝑡-sentences that are true
at all times in all temporal models. Since temporal models are just Kripke models,
proof methods for the minimal modal logic K are easily adapted to K𝑡. The main
novelty is that the rules for the box and the diamond can be used twice over, once for
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7 Temporal Logic

the forward-looking operators F and G, and once for the backward-looking P and H.
In the tree method for K𝑡, we have all the K-rules, with G as the box and F as the

diamond. In addition, we have rules for H as the box and P as the diamond with a
reversed perspective on the accessibility (or precedence) relation:

G 𝐴 (𝜔)
𝜔 < 𝜈

𝐴 (𝜈)

¬G 𝐴 (𝜔)

𝜔 < 𝜈
¬𝐴 (𝜈)

↑
new

F 𝐴 (𝜔)

𝜔 < 𝜈
𝐴 (𝜈)

↑
new

¬F 𝐴 (𝜔)
𝜔 < 𝜈

¬𝐴 (𝜈)

H 𝐴 (𝜔)
𝜈 < 𝜔

𝐴 (𝜈)

¬H 𝐴 (𝜔)

𝜈 < 𝜔
¬𝐴 (𝜈)

↑
new

P 𝐴 (𝜔)

𝜈 < 𝜔
𝐴 (𝜈)

↑
new

¬P 𝐴 (𝜔)
𝜈 < 𝜔

¬𝐴 (𝜈)

In the axiomatic approach, we have two versions of the (K) schema, one for the
forward-looking box G and one for the backward-looking box H:

G(𝐴 → 𝐵) → (G 𝐴 → G 𝐵)(GK)
H(𝐴 → 𝐵) → (H 𝐴 → H 𝐵)(HK)

We also have two versions of Necessitation, and two versions of (Dual):

¬ F 𝐴 ↔ G ¬𝐴(GDl)
¬ P 𝐴 ↔ H ¬𝐴(HDl)
If 𝐴 occurs in a proof, G 𝐴 may be appended.(GNec)
If 𝐴 occurs in a proof, H 𝐴 may be appended.(HNec)
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7 Temporal Logic

In addition, we need two interaction principles, reflecting the fact that the accessibil-
ity relation for F and G is the inverse of the accessibility relation for P and H:

𝐴 → G P 𝐴(Con1)
𝐴 → H F 𝐴(Con2)

These axioms and rules, added to those of classical propositional logic, define
an axiomatic calculus that is sound and complete for K𝑡. (Completeness is easily
proved with the canonical model technique.)

Exercise 7.3
Show with the help of definition 7.2 that all instances of (Con1) and (Con2)
are true at all times in all temporal models.

Exercise 7.4
Give K𝑡-tree proofs for the following schemas.
(a) 𝐴 → G P 𝐴
(b) 𝐴 → H F 𝐴
(c) F 𝐴 → H F F 𝐴
(d) P G 𝐴 → P F 𝐴
(e) H 𝐴 ↔ H F H 𝐴

For most applications, K𝑡 is too weak. We will want to impose further restrictions
on the relevant temporal models. For example, definition 7.1 allows for cases in
which 𝑡 < 𝑠 and 𝑠 < 𝑟 without 𝑡 < 𝑟. But if a time 𝑡 is earlier than 𝑠, and 𝑠 is earlier
than 𝑟, then surely 𝑡 must be earlier than 𝑟. For almost every application of temporal
logic, we assume that the precedence relation is transitive. This corresponds to the
(4)-schema for G. It also corresponds to the (4)-schema for H.

G 𝐴 → G G 𝐴(4G)
H 𝐴 → H H 𝐴(4H)
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Exercise 7.5
Explain why, if a relation < is transitive, then so is its converse. The converse
> of < is the relation that holds between 𝑥 and 𝑦 iff 𝑦 < 𝑥.

Another plausible condition is that no time is earlier than itself. Formally, <
should be irreflexive, so that no element of 𝑇 is <-related to itself. We know that
reflexivity corresponds to the (T)-schema, whose (forward-looking) temporal ana-
logue would be G 𝐴 → 𝐴. What corresponds to irreflexivity? The following observa-
tion reveals the answer: nothing.

Observation 7.1: A sentence is valid in the class of irreflexive frames iff it
is valid in the class of all frames.

Proof sketch: The right-to-left direction is obvious. The left-to-right direction is
implied by the answer to exercise 4.8. But we can give a more direct argument.

Suppose that some sentence 𝐴 is not valid in the class of all frames. We show
that 𝐴 is not valid in the class of irreflexive frames. That 𝐴 is not valid in the class
of all frames means that there is some world 𝑤 in some model 𝑀 = ⟨𝑊, 𝑅, 𝑉 ⟩ at
which 𝐴 is false. We will show that there is some world in some irreflexive model
at which 𝐴 is false.

To this end, we will construct an irreflexive model 𝑀𝑖 = ⟨𝑊 ′, 𝑅′, 𝑉 ′ ⟩ from 𝑀
in which the same sentences are true at 𝑤 as in 𝑀. Since 𝐴 is true at 𝑤 in 𝑀, it
follows that 𝐴 is true at 𝑤 in 𝑀𝑖.

Initially, 𝑀𝑖 has the same worlds, the same accessibility relation, and the same
interpretation function as 𝑀. Now for any world 𝑤 in 𝑀 that can see itself, we add
a new world 𝑤′ to 𝑀𝑖 so that

• 𝑤′ verifies the same sentence letters as 𝑤: if 𝑤 ∈ 𝑉(𝑃) then 𝑤′ ∈ 𝑉(𝑃);
• 𝑤′ can see the same worlds as 𝑤: whenever 𝑤𝑅′𝑣 then 𝑤′𝑅′𝑣; and
• 𝑤′ can be seen from the same worlds as 𝑤: whenever 𝑣𝑅′𝑤 then 𝑣𝑅′𝑤′.

Finally, we make 𝑤 inaccessible from itself in 𝑀𝑖. A simple proof by induction on
complexity shows that if a sentence is true at a world 𝑤 in 𝑀 then it is also true at
𝑤 in 𝑀𝑖.
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Given transitivity, irreflexivity is closely related to asymmetry. Recall from the
previous chapter that < is asymmetric if whenever 𝑡 < 𝑠 then not 𝑠 < 𝑡. There is no
modal schema that corresponds to asymmetry.

Exercise 7.6
Show that a transitive relation is irreflexive iff it is asymmetric.

Exercise 7.7
A popular idea in many cultures is that time is circular. Does this cast doubt
on asymmetry? What about irreflexivity?

𝑡

𝑠

𝑟

In the previous chapter, I mentioned that transitive and ir-
reflexive relations are called (strict) partial orders. The name
reflects the fact that such orders need not order everything. In
a model of branching time, for example, we can have 𝑡 < 𝑠 and
𝑡 < 𝑟 but neither 𝑠 < 𝑟 nor 𝑟 < 𝑠; in that case, 𝑟 and 𝑠 are not
ordered by the precedence relation.

We can rule out such cases by imposing the requirement of
connectedness, also known as completeness or totality. This
demands that for any points 𝑡 and 𝑠, either 𝑡 < 𝑠 or 𝑡 = 𝑠 or 𝑠 < 𝑡. An irreflexive,
transitive, and connected relation is called a (strict) linear order (or a strict total
order).

For some applications, we may want linearity in only one direction. Many philoso-
phers have been attracted to a branching-future conception of time, where a point in
time may have more than one future, but only one past. In such models, we would
only require left-linearity: that if 𝑠 < 𝑡 and 𝑟 < 𝑡, then either 𝑠 < 𝑟 or 𝑠 = 𝑟 or 𝑟 < 𝑠.

An axiom schema corresponding to left-linearity is (LL):

(LL) F P 𝐴 → (F 𝐴 ∨ 𝐴 ∨ P 𝐴)

Right-linearity – the assumption that if 𝑡 < 𝑠 and 𝑡 < 𝑟, then either 𝑠 < 𝑟 or 𝑠 = 𝑟 or
𝑟 < 𝑠 – corresponds to (RL):

(RL) P F 𝐴 → (P 𝐴 ∨ 𝐴 ∨ F 𝐴)
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The conjunction of (LL) and (RL) is valid on a frame iff the frame’s precedence
relation does not branch in either direction. This is not quite the same as connected-
ness, because it allows for frames with parallel time lines. There is no schema that
corresponds to connectedness.

The tree rules for left-linearity and right-linearity directly reflect the definition of
the two properties.

Left-Linearity
𝜈 < 𝜔
𝜐 < 𝜔

ggggg
ggggg

gg
WWWWW

WWWWW
WW

𝜈 < 𝜐 𝜈 = 𝜐 𝜐 < 𝜈

Right-Linearity
𝜔 < 𝜈
𝜔 < 𝜐

ggggg
ggggg

gg
WWWWW

WWWWW
WW

𝜈 < 𝜐 𝜈 = 𝜐 𝜐 < 𝜈

These rules create three branches. They also create “identity nodes” of the form
𝜈 = 𝜐, stating that two world/time labels refer to the same thing. (This must be
taken into account when we read off a countermodel from an open branch.) We
need two further rules to deal with identity nodes. Both of these rules are called
‘Identity’.

𝐴 (𝜔)
𝜔 = 𝜈

𝐴 (𝜈)

𝐴 (𝜔)
𝜈 = 𝜔

𝐴 (𝜈)

Exercise 7.8
Use the tree method to check which of the following sentences are valid,
assuming time is linear (i.e., using the Transitivity, Left-Linearity, Right-
Linearity, and Identity rules).
(a) (F 𝑝 ∧ F 𝑞) → F(𝑝 ∧ 𝑞)
(b) P G G 𝑝 → G G 𝑝
(c) P F 𝑝 → (P 𝑝 ∨ (𝑝 ∨ F 𝑝))
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(d) P H 𝑝 → H 𝑝
(e) F G 𝑝 → G F 𝑝
(f) F(G 𝑞 ∧ ¬𝑝) → G(𝑝 → (G 𝑝 → 𝑞))

The precedence relation in relativistic spacetime is neither left-linear nor right-
linear. But it has a weaker property: convergence. A spacetime point 𝑝1 can pre-
cede two points 𝑝2 and 𝑝3 neither of which precedes the other, but these two points
will always precede a common later point 𝑝4. Convergence corresponds to the (G)-
schema. In temporal logic, we have one (G)-schema for future convergence and one
for past convergence:

F G 𝐴 → G F 𝐴(FG)
P H 𝐴 → H P 𝐴(PG)

Exercise 7.9
Can you find schemas that correspond to the following frame properties?
(a) There is no last time. (That is, every time precedes some time.)
(b) There is no first time.
(c) There is a last time.
(d) There is a first time.

Exercise 7.10
Show that the schema F 𝐴 → F F 𝐴 corresponds to density. (You have to show
that (a) whenever a frame is dense then F 𝐴 → F F 𝐴 is valid on the frame, and
(b) whenever F 𝐴 → F F 𝐴 is valid on a frame then the frame is dense.)

Exercise 7.11
Can you find an 𝔏𝑇 -expression stating that 𝑝 is true at all times? Can you do
so if you make assumptions about the precedence relation?
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7.4 Branching time

In section 1.5 we looked at the idea that the future is “open” while the past is “settled”,
insofar as we can still influence (say) whether we will exercise tomorrow, but not
whether we have exercised yesterday. Some have argued that this calls for a non-
linear model of time, with multiple branches into the future. On one branch, we
would exercise tomorrow, on another we would not.

This line of thought appears to conflate temporal and modal considerations. The
precedence relation in models of time is normally understood as a purely temporal
relation – as the earlier-later relation. The fact that we can bring about a world in
which we exercise tomorrow and a world in which we don’t exercise does not entail
that both kinds of tomorrow take place here in the actual world.

If we want to make explicit the connections between settledness and time, it is
better to use a multi-modal language with circumstantial operators for settledness
and openness in addition to the purely temporal operators F, G, P, H. We could then
say things like P 𝑝 →□P 𝑝 to formalize the claim that if 𝑝 has happened then it is
settled that 𝑝 has happened.

Exercise 7.12
Suppose we endorse all instances of the schema (S1) P 𝐴 →□P 𝐴. Suppose
we also endorse all instances of (S2) ¬P 𝐴 →□¬P 𝐴, on the grounds that if
something has failed to happen then there is nothing we can do that would
make it have happened. Let’s further assume that the present time is not the
first, and that the box is closed under logical consequence, meaning that if
□𝐴1, … ,□𝐴𝑛 are true at a time, and 𝐵 is entailed by 𝐴1, … , 𝐴𝑛, then□𝐵 is true
(at the time) as well. Show that we can then derive the fatalist conclusion that
anything that never actually happen is settled to never happen: all instances
of (¬ P 𝐴 ∧ ¬𝐴 ∧ ¬ F 𝐴) →□¬ F 𝐴 are true. (Hint: use instances of (S1) and
(S2) in which 𝐴 is a statement about the future.)

There are nonetheless good reasons to consider branching models of time. I al-
ready mentioned that such models are widely used in computer science, where the
“times” represent states of a computational process and the precedence relation has
a semi-modal interpretation, holding between two states iff the first can lead to the
second. I also mentioned that the precedence relation in relativistic spacetime al-
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lows for branching, although diverging spacetime branches ultimately reconverge.
A more classical form of branching (without reconvergence) has been argued to fol-
low from a certain interpretation of quantum physics. On this interpretation, what
are normally understood to be chance events are really branching events in which all
possible outcomes actually take place.

Another way to motivate a branching conception of time arises from a metaphys-
ical view called presentism. According to presentism, only the present is real; all
truths that seem to concern other times are reducible to more fundamental truths
about the present. If, for example, it is true that there was a sea battle yesterday,
then according to presentism this must ultimately be explained by what is true now;
there must be facts about the present state of the world that entail (and explain) yes-
terday’s sea battle. Different forms of presentism disagree over what the relevant
facts about the present might be. On one view, they are particular facts about the
distribution of physical particles and fields etc. together with the general laws of na-
ture. If the laws of nature are deterministic, then the complete truth about the present
distribution of particles and fields etc. together with the laws fixes all truths about
the past and about the future. But suppose the laws are indeterministic towards the
future: they merely settle that if the present physical state of the world is so-and-so,
then the future is either like this or like that. In that case, the presentist will regard
both of these futures as equally actual.

Let’s assume, then, that we want to reason about branching time. This is less
straightforward than it might at first appear.

Two pieces of terminology will be useful. First, let’s define a history in a model
⟨𝑇, <, 𝑉 ⟩ as a maximal linearly ordered subset of 𝑇 . That is, a history is a collection
of times 𝐻 such that

(i) for all 𝑡 and 𝑠 in 𝐻, either 𝑡 < 𝑠 or 𝑡 = 𝑠 or 𝑠 < 𝑡, and

(ii) no further member of 𝑇 could be added to 𝐻 without making (i) false.

𝑡1 𝑡2

𝑡3

𝑡4

The model (or rather, frame) depicted on the right contains
two histories: {𝑡1, 𝑡2, 𝑡3} and {𝑡1, 𝑡2, 𝑡4}.

For the second piece of terminology, let 𝑡 be any time
in any model. Any maximal linearly ordered set of times
later than 𝑡 will be called a future of 𝑡. In the model on
the right, 𝑡1 has two futures: {𝑡2, 𝑡3} and {𝑡2, 𝑡4}.
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If you look back at definition 7.2, you can see that in the standard semantics for
temporal logic, G 𝑝 is true at 𝑡 iff 𝑝 is true at all times in all futures of 𝑡; F 𝑝, on
the other hand, is true at 𝑡 iff 𝑝 is true at some time in at least one future of 𝑡. This
ensures that G and F are duals, but it is often thought to be problematic if we want
F 𝑝 to translate ‘it will be the case that 𝑝’.

To illustrate, suppose I’m about to toss a coin. In one future (let’s assume), the
coin will land heads, in another it will land tails. By definition 7.2, both F ℎ and F 𝑡
are true. But should we say that the coin will land heads and also that it will land
tails?

We could adopt an alternative semantics for F according to which F 𝑝 is true at 𝑡
iff 𝑝 is true at some time in all futures of 𝑡:

𝑀, 𝑡 |= F 𝐴 iff every future of 𝑡 contains some 𝑠 such that 𝑀, 𝑠 |= 𝐴.

This is known as the Peircean interpretation of F (after Charles S. Peirce; the name
is due to Arthur Prior).

On the Peircean account, F 𝑝 is false whenever 𝑝 only takes place in one of several
futures. If we keep the classical interpretation of G, both F 𝑝 and G ¬𝑝 can be false;
the two operators are no longer duals. The dual of F is a strange operator that applies
to a sentence 𝐴 iff there is some future in which 𝐴 is always true.

Exercise 7.13
Explain why the Peircean interpretation renders 𝑝 → H F 𝑝, an instance of
(Con2), invalid.

A rather different approach is taken by (what Prior called) the Ockhamist ap-
proach. According to Ockhamism, if there are several futures then it doesn’t make
sense to say – without qualification – that 𝑝 will be the case, or that 𝑝 won’t be case.
To talk about what will or won’t be the case we must specify which future we have
in mind.

Formally, in Ockhamist semantics, the truth-value of every sentence is evaluated
at a pair consisting at a time and a history. Histories are linear by definition, so
the problems raised by multiple futures disappear. To say that 𝑝 is the case in some
history, or in all histories, Ockhamists add new operators ♢ and □ that quantify over
histories. The Peircean F operator is equivalent to □F in Ockhamism. □F 𝑝 says
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that every future contains a time at which 𝑝 is true; ♢𝐹𝑝, by contrast, would say that
some future contains a time which 𝑝 is true.

Here is the full Ockhamist semantics.

Definition 7.3: Ockhamist Semantics
If 𝑀 = ⟨𝑇, <, 𝑉 ⟩ is a temporal model, 𝐻 is a history in 𝑀, 𝑡 is a member of 𝐻,
𝑃 is any sentence letter, and 𝐴, 𝐵 are any sentences in the Ockhamist language,
then
(a) 𝑀, 𝐻, 𝑡 |= 𝑃 iff 𝑡 is in 𝑉(𝑃).
(b) 𝑀, 𝐻, 𝑡 |= ¬𝐴 iff 𝑀, 𝐻, 𝑡 |≠ 𝐴.
(c) 𝑀, 𝐻, 𝑡 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝐻, 𝑡 |= 𝐴 and 𝑀, 𝐻, 𝑡 |= 𝐵.
(d) 𝑀, 𝐻, 𝑡 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝐻, 𝑡 |= 𝐴 or 𝑀, 𝐻, 𝑡 |= 𝐵.
(e) 𝑀, 𝐻, 𝑡 |= 𝐴 → 𝐵 iff 𝑀, 𝐻, 𝑡 |≠ 𝐴 or 𝑀, 𝐻, 𝑡 |= 𝐵.
(f) 𝑀, 𝐻, 𝑡 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝐻, 𝑡 |= (𝐴 → 𝐵) and 𝑀, 𝐻, 𝑡 |= (𝐵 → 𝐴).
(g) 𝑀, 𝐻, 𝑡 |= F 𝐴 iff 𝑀, 𝐻, 𝑠 |= 𝐴 for some 𝑠 in 𝐻 such that 𝑡 < 𝑠.
(h) 𝑀, 𝐻, 𝑡 |= G 𝐴 iff 𝑀, 𝐻, 𝑠 |= 𝐴 for all 𝑠 in 𝐻 such that 𝑡 < 𝑠.
(i) 𝑀, 𝐻, 𝑡 |= P 𝐴 iff 𝑀, 𝐻, 𝑠 |= 𝐴 for some 𝑠 in 𝐻 such that 𝑠 < 𝑡.
(j) 𝑀, 𝐻, 𝑡 |= H 𝐴 iff 𝑀, 𝐻, 𝑠 |= 𝐴 for all 𝑠 in 𝐻 such that 𝑠 < 𝑡.
(k) 𝑀, 𝐻, 𝑡 |= □𝐴 iff 𝑀, 𝐽, 𝑡 |= 𝐴 for all histories 𝐽 that contain 𝑡.
(l) 𝑀, 𝐻, 𝑡 |= ♢𝐴 iff 𝑀, 𝐽, 𝑡 |= 𝐴 for some history 𝐽 that contains 𝑡.

A sentence is valid in Ockhamist semantics if it is true at all times 𝑡 on all histories
𝐻 (containing 𝑡) in all models. As always, we can get stronger conceptions of validity
– stronger logics – by adding further constraints on the precedence relation.

Exercise 7.14
Which of the following schemas are valid in Ockhamist semantics?
(a) □𝐴 → 𝐴
(b) □𝐴 →□□𝐴
(c) ♢𝐴 →□♢𝐴
(d) □F 𝐴 → F□𝐴
(e) P 𝐴 →□P♢𝐴
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There is something odd about the Ockhamist approach. Consider a scenario in
which there are multiple futures; one future holds a sea battle, another holds no sea
battle. Let 𝑝 translate ‘there is a sea battle’. Is F 𝑝 is true in this scenario (under the
given interpretation of 𝑝)? What about F(𝑝 ∨ ¬𝑝)? Or 𝐺𝑝 → 𝐺𝐺𝑝?

Ockhamism refuses to give an answer. In Ockhamism, sentences are only true
or false relative to a model and a time and a history. A branching-time scenario,
however, does not fix a particular history. We’d like to know which sentences are
true today if there are multiple futures. Ockhamism only tells us which sentences
are true relative to each of the different futures. Relative to a history that contains a
sea battle, F 𝑝 is true. Relative to other histories, F 𝑝 is false.

If we insist that logical validity should formalize the idea of truth in all scenarios
under all interpretations of non-logical vocabulary then we can’t accept the official
definition of validity in Ockhamist semantics. We have to extend the Ockhamist
semantics to specify under what conditions a sentence is true in a model at a time,
without fixing a history. Then we can say that a sentence is valid iff it is true at all
times in all models.

A simple way to do this is to stipulate that a sentence is true at time in an (Ock-
hamist) model iff it is true relative to all histories that contain the time:

𝑀, 𝑡 |= 𝐴 iff 𝑀, 𝐻, 𝑡 |= 𝐴 for all histories 𝐻 that contain 𝑡.

This is known as a supervaluationist semantics.
Supervaluationism is often used when a formal semantics defines truth relative

to an “extra” parameter that doesn’t correspond to any feature of a conceivable sce-
nario. In Ockhamist semantics, that parameter is 𝐻. For a different application,
consider vagueness. If 𝑝 translates ‘it is warm’, and the temperature is borderline
warm, it is not clear what we should say about the truth-value of 𝑝, and about vari-
ous complex sentences containing 𝑝. One popular approach to vagueness is to first
define truth relative to a sharpening of vague expressions. Relative to a sharpening
on which temperatures above 15.0 degrees Celsius are warm, 𝑝 has a clear truth-
value in any conceivable scenario, as do complex sentences containing 𝑝. Since an
actual scenario does not fix a particular sharpening, this semantics contains an extra
parameter. We can define a notion of truth without that parameter by saying that a
sentence is true in a scenario iff it is true in that scenario relative to every eligible
sharpening.
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Supervaluationist accounts tend to have some non-classical features. Suppose
we live in a branching world in which one future contains a sea battle and another
doesn’t. Let 𝑝 express that a sea battle takes place. According to supervaluationist
Ockhamism, neither F 𝑝 nor ¬ F 𝑝 is true in that scenario. Both are true relative to
some but not relative to all histories. So neither is simply true. Assuming that a
sentence is false if its negation is true, F 𝑝 is neither true nor false!

Logics in which a sentence can have a third status besides (mere) truth and (mere)
falsity are called three-valued. Three-valued approaches to branching time are
sometimes defended by the intuition that if a sea battle occurs on some but not all
branches of the future, then one can’t truly assert that a battle will occur nor that it
won’t occur.

The Polish logician Jan Łukasiewicz argued that statements about the future are
either true, false, or “indeterminate”. To accommodate this third truth-value, he pro-
posed three-valued truth-tables specifying how the truth-value of complex sentences
are determined by the truth-value of their parts. For example, he suggested that if
two sentences 𝐴 and 𝐵 are indeterminate, then their conjunction 𝐴 ∧ 𝐵, disjunction
𝐴 ∨ 𝐵, and negations ¬𝐴, ¬𝐵 are also indeterminate.

In the sea battle scenario, Łukasiewicz’s account renders F 𝑠 ∨¬F 𝑠 indeterminate,
assuming F 𝑠 is indeterminate. This is often regarded as problematic: even if we
shouldn’t assert that there will be a sea battle, it is argued that we are justified to assert
that there either will or there won’t be a sea battle. The supervaluationist form of
Ockhamism, while also three-valued, avoids this problem. On the supervaluationist
interpretation, F 𝑠 and ¬F 𝑠 are neither true nor false in the sea battle scenario, but
F 𝑠 ∨ ¬F 𝑠 is true.

Exercise 7.15
Let’s say that a sentence is super-valid if it is true at all times in all models,
where truth at a time in a model is understood in accordance with supervalu-
ationist Ockhamism. Explain why the super-valid sentences are precisely the
sentences that are valid by the original Ockhamist definition of validity (just
below definition 7.3).
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Exercise 7.16
Things are more complicated for entailment. Let’s say that 𝐴 Ockham-entails
𝐵 iff there is no time on any history in any temporal model at which 𝐴 is true
and 𝐵 false. Let’s say that 𝐴 super-entails 𝐵 iff there is no time in any temporal
model at which 𝐴 is true and 𝐵 false, where truth at a time in a model is defined
in accordance with supervaluationism. Is Ockham-entailment equivalent to
super-entailment? Explain.

7.5 Extending the language

The expressive resources of standard modal and temporal logic are weak. There are
many things we might want to say about the unfolding of events in time that can’t be
said with F, G, P, and H. The Ockhamist history quantifiers are one way of adding
expressive power to the basic language of temporal logic. In this section, we will
look at some others.

A useful operator for logics of discrete and linear time is the “next” operator X
(also written ‘○’). Informally, X 𝐴 means that 𝐴 is true at the next point in time.
Formally:

𝑀, 𝑡 |= X 𝐴 iff 𝑀, 𝑠 |= 𝐴 for some 𝑠 such that (i) 𝑡 < 𝑠 and (ii) 𝑠 < 𝑟 for all 𝑟
such that 𝑟 ≠ 𝑠 and 𝑡 < 𝑟.

With the help of X, we can also say that 𝐴 is true in two units of time (X X 𝐴),
in three units of time (X X X 𝐴), and so on. The corresponding operator for talking
about the previous point in time is usually written Y.

A more powerful extension of 𝔏𝑇 adds binary operators for “since” and “until”,
which can be used to translate sentences like (1) and (2).

(1) Ever since we left the house it has been raining.
(2) It will be raining until we go back inside.

Informally, 𝐴 S 𝐵 is true iff 𝐵 was true at some time in the past and 𝐴 has always been
true since then; 𝐴 U 𝐵 is true iff 𝐵 will be true at some time in the future and 𝐴 will
always be true until then. Formally:
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𝑀, 𝑡 |= 𝐴 S 𝐵 iff there is some 𝑠 with 𝑠 < 𝑡 for which 𝑀, 𝑠 |= 𝐵, and for all 𝑟
with 𝑠 < 𝑟 < 𝑡, we have 𝑀, 𝑟 |= 𝐴.

𝑀, 𝑡 |= 𝐴 U 𝐵 iff there is some 𝑠 with 𝑡 < 𝑠 for which 𝑀, 𝑠 |= 𝐵, and for all 𝑟
with 𝑡 < 𝑟 < 𝑠, we have 𝑀, 𝑟 |= 𝐴.

The operators F, G, P, and H can all be defined in terms of S and U. For example,
P 𝐴 is equivalent to (𝑝 ∨ ¬𝑝) S 𝐴. And F 𝐴 is equivalent to (𝑝 ∨ ¬𝑝) U 𝐴.

Exercise 7.17
Define X 𝐴 in terms of U.

Another noteworthy addition to temporal logic is the “Now” operator N. To see
the point of this operator, consider the following multi-modal statement.

(3) We already knew yesterday that there would be a test today.

Using Y for ‘yesterday’, we might try to translate (3) as Y K 𝑝, where 𝑝 translates
‘there is a test’. But that’s wrong. By the semantics for Y, Y K 𝑝 is true today iff
K 𝑝 is true yesterday (using days as temporal units). Since K 𝑝 entails 𝑝, it follows
that Y K 𝑝 is true today only if 𝑝 is true yesterday. But the test takes place today, not
yesterday.

Intuitively, the problem is that ‘today’ in (3) refers to the present day, even though
it occurs in the scope of the ‘yesterday’ operator. The same thing happens in the
quantified statement (4).

(4) One day everyone who is now rich will be poor.

Here, ‘now’ refers to the present time, even though it is in the scope of the F operator
‘one day’.

With the “Now” operator N, we can translate (3) as Y K N 𝑝, and (4) as F ∀𝑥(N 𝑅𝑥 → 𝑃𝑥).
(We will have a closer look at quantified modal logic in later chapters.)

Intuitively, the N operator allows us to look outside the scope of an embedding
operator. P N 𝑝, for example, is true if there is some time in the past such that 𝑝 is
true not at that time, but at the present. How does this work formally?
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By the semantics of P,

𝑀, 𝑡 |= P N 𝑝 iff 𝑀, 𝑠 |= N 𝑝 for some time 𝑠 < 𝑡.

Now we want 𝑀, 𝑠 |= N 𝑝 to be true iff 𝑝 is true at the original time 𝑡. So we need to
keep track of the original time at which we evaluate a sentence, even if a temporal
operator shifts the time at which a subsentence is evaluated.

The simplest way to achieve this is to define truth relative to pairs of times. One
of the times is shifted by the temporal operators, the other is held fixed.

Definition 7.4: Two-Dimensional Temporal Semantics
If 𝑀 = ⟨𝑇, <, 𝑉 ⟩ is a temporal model, 𝑡, 𝑡0 are members of 𝑇 , 𝑃 is any sentence
letter, and 𝐴, 𝐵 are any 𝔏𝑇 -sentences, then

(a) 𝑀, 𝑡0, 𝑡 |= 𝑃 iff 𝑡 is in 𝑉(𝑃).
(b) 𝑀, 𝑡0, 𝑡 |= ¬𝐴 iff 𝑀, 𝑡0, 𝑡 |≠ 𝐴.
(c) 𝑀, 𝑡0, 𝑡 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑡0, 𝑡 |= 𝐴 and 𝑀, 𝑡0, 𝑡 |= 𝐵.
(d) 𝑀, 𝑡0, 𝑡 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑡0, 𝑡 |= 𝐴 or 𝑀, 𝑡0, 𝑡 |= 𝐵.
(e) 𝑀, 𝑡0, 𝑡 |= 𝐴 → 𝐵 iff 𝑀, 𝑡0, 𝑡 |≠ 𝐴 or 𝑀, 𝑡0, 𝑡 |= 𝐵.
(f) 𝑀, 𝑡0, 𝑡 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑡0, 𝑡 |= (𝐴 → 𝐵) and 𝑀, 𝑡0, 𝑡 |= (𝐵 → 𝐴).
(g) 𝑀, 𝑡0, 𝑡 |= F 𝐴 iff 𝑀, 𝑡0, 𝑠 |= 𝐴 for some 𝑠 in 𝑇 such that 𝑡 < 𝑠.
(h) 𝑀, 𝑡0, 𝑡 |= G 𝐴 iff 𝑀, 𝑡0, 𝑠 |= 𝐴 for all 𝑠 in 𝑇 such that 𝑡 < 𝑠.
(i) 𝑀, 𝑡0, 𝑡 |= P 𝐴 iff 𝑀, 𝑡0, 𝑠 |= 𝐴 for some 𝑠 in 𝑇 such that 𝑠 < 𝑡.
(j) 𝑀, 𝑡0, 𝑡 |= H 𝐴 iff 𝑀, 𝑡0, 𝑠 |= 𝐴 for all 𝑠 in 𝑇 such that 𝑠 < 𝑡.
(k) 𝑀, 𝑡0, 𝑡 |= N 𝐴 iff 𝑀, 𝑡0, 𝑡0 |= 𝐴.

Like the Ockhamist semantics from the previous section, this semantics has an
extra parameter. An ordinary scenario is represented by a single time in a model,
not by a pair of times. So we need to specify under what conditions a sentence
is true at a (single) time. Here, the standard approach is not supervaluation but
“diagonalization”:

𝑀, 𝑡 |= 𝐴 iff 𝑀, 𝑡, 𝑡 |= 𝐴.

This “two-dimensional” semantics correctly predicts that P N 𝑝 entails 𝑝.
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1. Assume 𝑀, 𝑡 |= P N 𝑝.
2. Then 𝑀, 𝑡, 𝑡 |= P N 𝑝, by the definition of truth at a time in a model.
3. Then 𝑀, 𝑡, 𝑠 |= N 𝑝 for some 𝑠 < 𝑡, by clause (i) of definition 7.4.
4. Then 𝑀, 𝑡, 𝑡 |= 𝑝, by clause (k) of definition 7.4.
5. Then 𝑀, 𝑡 |= 𝑝, by the definition of truth at a time in a model.

The presence of a “Now” operator has far-reaching consequences for the logic
of time. For example, N 𝑝 → 𝑝 is valid, in the sense that it is true at all times in all
models. But G(N 𝑝 → 𝑝) is invalid. If 𝑝 is true at 𝑡 and false at some time after 𝑡, then
G(N 𝑝 → 𝑝) is false at 𝑡. So we must give up the forward and backward Necessitation
rules. The fact that something is logically true does not entail that it will always be
true!

Exercise 7.18
‘It might have been that everyone who is actually rich is poor.’ This says that
there is a world 𝑤 such that everyone who is rich at the actual world is poor
at 𝑤. To formalize statements like these, we need a modal operator analogous
to N that takes us back to the actual world, even in the scope of other modal
operators. This operator is called the actually operator. Let’s write it as A and
add it to 𝔏𝑀 . Can you find a sentence 𝐵 in this language that is logically true
but not necessarily true, in the sense that 𝐵 is true at all worlds in all models
but □𝐵 is not?
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