Chapter 7

Exercise 7.1

- (a) $H \neg p$ *p*: It is warm
- (b) F pp: There is a sea battle
- (c) $\neg F P p$ or, perhaps, $F \neg P p$ p: There is a sea battle
- (d) $F(p \lor Pq)$ or $F(Fp \lor FPq)$ *p*: It is warm
- (e) $\neg P p \rightarrow \neg F q$ or $G(\neg P p \rightarrow \neg q)$ p: You study, q: you pass the exam
- (f) $P(p \land q)$ *p*: I am having tea, *q*: the door bell rings

Exercise 7.2

(a), (c), (f), (g), and (h) are true, (b), (d), and (e) are false.

Exercise 7.3

(Con1): Suppose some sentence of the form $A \to G PA$ is false at some time *t* in some temporal model. By clause (e) of definition 7.2, this means that *A* is true at *t* and G PA is false at *t*. By clause (h), the latter means that there is a time *s* with t < s such that PA is not true at *s*. By clause (i), it follows that *A* is not true at *t*. Contradiction.

The argument for (Con2) is analogous.

Exercise 7.4

(a) 1.	$\neg (A \to GPA) (t)$	(Ass.)
2.		(1)
3.	$\neg G P A$ (t)	(1)
4.	t < s	(3)
5.	$\neg PA$ (s)	(3)
6.	$\neg A$ (t)	(4,5)
	х	
(b) 1.	$\neg (A \to HFA) (t)$	(Ass.)
2.	$A \qquad (t)$	(1)
3.	$\neg HFA$ (t)	(1)
4.	s < t	(3)
5.	$\neg FA$ (s)	(3)
6.	$\neg A$ (t)	(4,5)
	Х	
(c) 1.	$\neg(F A \to H F F A)$	(<i>t</i>) (Ass.)
2.	FA	(<i>t</i>) (1)
3.	\neg H F F A	(<i>t</i>) (1)
4.	s < t	(3)
5.	$\neg FFA$	(<i>s</i>) (3)
6.	$\neg FA$	(<i>t</i>) (4,5)
	Х	

(d)	1		рг.	A) (4)			
(d)	1.	$\neg(PGA\toPFA)$		\mathbf{A}) (t)	(Ass.)		
	2.	PGA		(t)	(1)		
	3.	¬PF	$\neg PFA$		(1)		
	4.	s < t	<u>.</u>		(2)		
	5.	GA		<i>(s)</i>	(2)		
	6.	A		(t)	(4,5)		
	7.	$\neg FA$		<i>(s)</i>	(3,4)		
	8.	$\neg A$		(t)	(4,7)		
		х					
(e)		1.	¬(H	$A \leftrightarrow H$	FHA)	(t) (Ass.	.)
						_	/
	2.	HA	(t)	(1)	4.	$\neg HA$	(<i>t</i>) (1)
	3.	\neg H F H A	(t)	(1)	5.	HFHA	(<i>t</i>) (1)
	6.	s < t		(3)	9.	s < t	(4)
	7.	$\neg FHA$	(<i>s</i>)	(3)	15.	$\neg A$	(<i>s</i>) (4)
	8.	$\neg HA$	(t)	(6,7)	11.	FHA	(<i>s</i>) (5,9)
		Х			12.	s < r	(11)
					13.	HA	(<i>r</i>) (11)
					14.	A	(s) (12,13)
						х	

Exercise 7.5

Suppose < is transitive, and x > y and y > z. Equivalently, y < x and z < y.By transitivity of <, we have z < x. So x > z.

Exercise 7.6

Suppose *R* is transitive. If there are points *x* and *y* for which xRy and yRx then xRx by transitivity. So if *R* isn't asymmetric then it isn't irreflexive. If *R* isn't irreflexive then there is a point *x* with xRx. This violates asymmetry, because asymmetry demands

that if xRx then not xRx.

Exercise 7.7

If time is transitive and circular, then it is neither asymmetric nor irreflexive.

Exercise 7.8

(a), (d), and (e) are invalid. Here are trees for (b), (c), and (f):

(b) 1.	$\neg(PGGp\toGGp)$	(t)	(Ass.)
2.	PGGp	(t)	(1)
3.	$\neg \operatorname{G}\operatorname{G} p$	(t)	(1)
4.	s < t		(2)
5.	GGp	<i>(s)</i>	(2)
6.	t < r		(3)
7.	$\neg \operatorname{G} p$	(r)	(3)
8.	s < r		(3,6)
9.	Gp	(<i>r</i>)	(5,8)
	Х		

10 Answers to the Exercises			
(c)	1.	$\neg (PFp \to (Pp \lor (p \lor Fp)))$	(<i>t</i>) (Ass.)
	2.	PFp	(<i>t</i>) (1)
	3.	$\neg(Pp \lor (p \lor Fp))$	(<i>t</i>) (1)
	4.	$\neg P p$	(<i>t</i>) (3)
	5.	$\neg(p \lor Fp)$	(<i>t</i>) (3)
	6.	$\neg p$	(<i>t</i>) (5)
	7.	\neg F p	(<i>t</i>) (5)
	8.	s < t	(2)
	9.	F <i>p</i>	(<i>s</i>) (2)
	10.	s < r	(9)
	11.	р	(<i>r</i>) (9)
12. <i>t</i>	< r	13. $t = r$	14. $r < t$
15.	$\neg p$ (r) (7,12) 16. $\neg p$ (r) (6,13) x	17. ¬ <i>p</i> (<i>r</i>) (4,16) x

10 Answers to the Exercises				
(f)	1. –	$G(F(Gq \land \neg p) \to G(p \to (Gp \to p)))$	(a) (Ass.)	
	2.	$F(Gq\wedge\neg p)$	(<i>t</i>) (1)	
	3.	$\neg G(p \to (G p \to q))$	(t) (1)	
	4.	t < s	(2)	
	5.	$Gq\wedge \neg p$	(<i>s</i>) (2)	
	6.	${\sf G}q$	(<i>s</i>) (5)	
	7.	$\neg p$	(<i>s</i>) (5)	
	8.	t < r	(3)	
	9.	$\neg(p \to (G p \to q))$	(<i>r</i>) (3)	
	10.	р	(r) (9)	
	11.	$\neg(Gp \to q)$	(r) (9)	
	12.	Gp	(<i>r</i>) (11)	
	13.	$\neg q$	(<i>r</i>) (11)	
14	. <i>s</i> < <i>r</i>	15. $s = r$	16. $r < s$	
17	. q (r) (×	(6,14) 18. p (s) (10, x	15) 19. p (x	s) (12,16)

Exercise 7.9

(a) For example, $GA \rightarrow FA$.

- (b) For example, $HA \rightarrow PA$.
- (c) No schema corresponds to the class of frames with a last time. If we also assume transitivity and quasi-connected (see page 147), then $G(A \land \neg A) \lor F G(A \land \neg A)$ works.
- (d) No schema corresponds to the class of frames with a first time. If we also assume transitivity and quasi-connectedness, then $H(A \land \neg A) \lor P H(A \land \neg A)$ works.

Exercise 7.10

Assume a frame is dense. Suppose for reductio that some instance of $FA \rightarrow FFA$ is false at some point *t* in some model *M* based on that frame. Then FA is true at *t* and

FFA is false. Since FA is true at t, it follows by definition 7.2 that A is true at some point s such that t < s. By density, there is a point r such that t < r < s. But since A is true at s, FA is true at r, and so FFA is true at t; contradiction.

In the other direction, we have to show that if a frame isn't dense then some instance of $FA \rightarrow FFA$ is false at some point *t* in some model *M* based on that frame. We take the simplest instance $Fp \rightarrow FFp$. If a frame isn't dense then there are points *t*, *s* such that t < s and no point lies in between *t* and *s*. Let *V* be an interpretation function that makes *p* true at *s* and false everywhere else. Then Fp is true at *t* but FFp is false. So $Fp \rightarrow FFp$ is false at *t*.

Exercise 7.11

Without assumptions about the flow of time there is no way to express in \mathfrak{L}_T that p is true at all times (or at some time). In linear flows, $p \wedge Hp \wedge Gp$ does the job.

Exercise 7.12

Suppose $\neg PA \land \neg A \land \neg FA$ is true at the present time *t*. Then $\neg PFA$ is true (at *t*). By (S2), we can infer $\Box \neg PFA$. But $\neg PFA K_t$ -entails $\neg (FA \land P(A \lor \neg A))$. Since the box is closed under logical consequence, this means that $\Box \neg (FA \land P(A \lor \neg A))$ is true at *t*. Since *t* is not the first time, $P(A \lor \neg A)$ is true at *t*, and so $\Box P(A \lor \neg A)$ is true at *t* as well, by (S1). have $\neg (FA \land P(A \lor \neg A))$ and $P(A \lor \neg A)$ together entail have $\neg FA$. Since the box is closed under logical consequence, it follows that $\Box FA$ is true at *t*.

Exercise 7.13

Consider a model with three times ordered by s < t and s < r. Assume p is true at t and not at r. Then $p \rightarrow H F p$ is false on the Peircean interpretation.

Exercise 7.14

(a)–(d) are valid, (e) is invalid.

To show that a schema is valid, assume for reductio that there is some time t on some history H in some model M at which the schema is false. Then (repeatedly) use definition 7.3 to derive a contradiction.

For (e), consider a model with three times t, s, r such that $s \prec t, r \prec t$, and neither

s < r nor r < s. Let q be true at s and false at the other two times. $Pq \rightarrow \Box P \Diamond q$ is false at t on the history $\langle s, t \rangle$.

Exercise 7.15

A sentence A is super-valid iff $M, t \models A$ for all temporal models M and times t in M. By supervaluationism, this holds iff $M, H, t \models A$ for all M, t, and histories H containing t. That's how Ockhamist validity was originally defined.

Exercise 7.16

Ockham-entailment is stronger than super-entailment: whenever *A* Ockham-entails *B*, then *A* super-entails *B*, but not the other way around.

Suppose A Ockham-entails B. Let t be any time in any temporal model at which A is true, i.e.: true relative to all histories through t. Since A Ockham-entails B, B is true at t relative to all histories through t. So A super-entails B.

But suppose *A* super-entails *B*. Let *t* be any time on any history *h* in any temporal model at which *A* is true. We can't infer that *B* is true at *t* on *h*, for *A* may be false at *t* relative to other histories *h'*. So we can't infer that *A* Ockham-entails *B*. Indeed, F p super-entails $\Box F p$, but F p does not Ockham-entail $\Box F p$.

Exercise 7.17 ($A \land \neg A$) U A. Exercise 7.18

 $A p \rightarrow p$.