Chapter 1

Exercise 5.1

For an agent who knows all truths only the actual world is epistemically accessible. For an agent who knows nothing all worlds are epistemically accessible.

Exercise 5.2

- (a) $K(r \lor s)$ r: It is raining; s: It is snowing
- (b) $K r \vee K s$ r: It is raining; s: It is snowing
- (c) $K r \lor K \neg r$ *r*: It is raining
- (d) This sentence is ambiguous. On one reading, it could be translated as M g → K g, on the other as K(M g → g)
 g: You are guilty

Exercise 5.3

You can use umsu.de/trees/ to create the tree proof. We can assume S5 for the box because it quantifies unrestrictedly over all worlds (as in chapter **??**).

Exercise 5.4

(NT) is valid on all and only the frames in which no world can see any world.

Exercise 5.5

We assume that ignorance of *A* can be formalized as $A \land \neg KA$. Ignorance of ignorance of *A* is therefore formalized as $(A \land \neg KA) \land \neg K(A \land \neg KA)$. A tree proof shows that the former K-entails the latter.

Exercise 5.6

In a Gettier case, the relevant proposition p (say, that you're looking at a barn) is true but unknown. By (0.4), it would follow that the agent knows that they don't know p. But in a typically Gettier case the agent does not know that they don't know p.

Exercise 5.7

All except (a) and (d) are correct. You can find trees or counterexamples for (a)-(e) on umsu.de/trees/ if you write K as a box and M as a diamond. Here is a tree for (f):

1.	$\neg((MKp\wedgeMKq)\toMK(p\wedge q))$		(<i>w</i>)	(Ass.)
2.	$MKp\wedgeMKq$		(<i>w</i>)	(1)
3.	$\neg MK(p \land q)$		(<i>w</i>)	(1)
4.	МК <i>р</i>		(<i>w</i>)	(2)
5.	MKq		(<i>w</i>)	(2)
6.	wRv			(4)
7.	Kp		(v)	(4)
8.	wRu			(5)
9.	${\sf K} q$		<i>(u)</i>	(5)
10.	vRt		(6,8,Con)
11.	uRt		(6.8,Con)
12.	wRt		((6.10,Tr)
13.	$\neg K(p \land q)$		(<i>t</i>)	(3,12)
14.	tRs			(13)
15.	$\neg (p \land q)$		(<i>s</i>)	(13)
		_		
16.	$\neg p$ (s) (15) 17.	$\neg q$	(<i>s</i>)	(15)
18.	<i>vRs</i> (10.14,Tr) 19.	uRs	(1	1.14,Tr)
20.	<i>p</i> (<i>s</i>) (7,18) 21.	q	(<i>s</i>)	(9,19)
	Х	Х		

Exercise 5.8

see https://plato.stanford.edu/entries/dynamic-epistemic/appendix-B-solutions.html

(where all the dates are 10 days later than they are in my version).

Exercise 5.9

(a) and (b) are valid, (c) and (d) are invalid. Here is a tree proof for (a).

1.	$\neg(M_1K_2p\toM_1p)$	<i>(w)</i>	(Ass.)
2.	$M_1 K_2 p$	(<i>w</i>)	(1)
3.	$\neg M_1 p$	(<i>w</i>)	(1)
4.	wR_1v		(2)
5.	K ₂ <i>p</i>	(<i>v</i>)	(2)
6.	$\neg p$	(<i>v</i>)	(3,4)
7.	vR_2v		(Refl.)
8.	p	(<i>v</i>)	(5,7)
	Х		

The tree for (c) doesn't close:

1.	$\neg(M_1\:K_2\:p\to\:M_2\:K_1\:p)$	(w)	(Ass.)
2.	$M_1 K_2 p$	(w)	(1)
3.	$\neg M_2 K_1 p$	(w)	(1)
4.	wR_1v		(2)
5.	K ₂ <i>p</i>	(v)	(2)
6.	vR_2v		(Refl.)
7.	р	(v)	(5,6)
8.	wR_2w		(Refl.)
9.	$\neg K_1 p$	(w)	(3,8)
10.	wR_1u		(9)
11.	$\neg p$	<i>(u)</i>	(9)

We could add a few more applications of Reflexivity, but the tree would remain open. It also gives us a countermodel: let $W = \{w, v, u\}$; w has 1-access to v and u; each

world has 1- and 2-access to itself; $V(p) = \{v\}$. In this model, at world w, $M_1 K_2 p$ is true while $M_2 K_1 p$ is false.

Cases (b) and (d) are similar.

Exercise 5.10

The (5)-schema for E_G states that $\neg E_G \neg A \rightarrow E_G \neg E_G \neg A$. To show that some instance of this is invalid, we need to find a case where some instance of $\neg E_G \neg A$ is true while $E_G \neg E_G \neg A$ is false. We can take the simplest instance, with A = p. Assume the relevant group has two agents, and consider a world w at which $K_1 \neg p$ and $\neg K_2 \neg p$ are true. By the assumption that (5) is valid for K_i , $K_2 \neg K_2 \neg p$ is also true at w. But $K_1 \neg K_2 \neg p$ can be false (at w). If it is, then $\neg E_G \neg p$ is true at w while $E_G \neg E_G \neg p$ is false.

Exercise 5.11

No, a transitive, serial, and euclidean relation is not always symmetric. Counterexample: wRv, vRv. This means that not all instances of (B) (which corresponds to symmetry) are valid in KD45.

Exercise 5.12

You can e.g. do a tree proof, using B as the box.

Exercise 5.13

Let *A* be an arbitrary proposition.

By (PI), $BA \rightarrow KBA$ is valid. By (KB), so is $KBA \rightarrow BBA$. By propositional logic, these entail $BA \rightarrow BBA$.

By (NI), $\neg B \neg A \rightarrow K \neg B \neg A$ is valid. By (KB), so is $K \neg B \neg A \rightarrow B \neg B \neg A$. By propositional logic, these entail $\neg B \neg A \rightarrow B \neg B \neg A$.

Exercise 5.14

The left-to-right direction is (KB). For the right-to-left direction, let A be an arbitrary proposition. By (SB), $BA \rightarrow BKA$ is valid. By (D) for belief, $BKA \rightarrow \neg B \neg KA$ is valid. The contraposition of (KB) gives us $\neg B \neg KA \rightarrow \neg K \neg KA$. Finally, the

contraposition of (5) for knowledge yields $\neg K \neg A \rightarrow KA$. The target proposition $BA \rightarrow KA$ is a truth-functional consequence of these four propositions.

Exercise 5.15

If the logic of belief is KD45 then $\Box \Diamond p$ is equivalent to $\Diamond p$ (as you can show, for example, with a tree proof).

Exercise 5.16

Suppose $B(p \land \neg Bp)$. In any logic that extends K, it follows that Bp and $B \neg Bp$. By (4), Bp entails BBp. Now we have $B \neg Bp$ and BBp, which violates (D).